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Abstract

Workers who lose their jobs during recessions face strikingly large and persistent declines
in their future earnings. Using individual-level administrative data from the United States, this
paper shows that an important driver of these costs is the general equilibrium effect of firms
simultaneously destroying many jobs during economic downturns. To obtain variation in the
job destruction rate that is unrelated to the productivity of new jobs, we exploit the differential
exposure of local labor markets to the idiosyncratic shocks of large, multi-region firms. We
find that job destruction fluctuations explain one-third of the difference between the average
worker’s cost of job loss in recessions and expansions. Accounting for additional spillover ef-
fects on employed workers, each marginal job that is destroyed imposes a total annual cost of
approximately $17,000 on other workers in the same labor market. These negative spillovers
could be offset by the potentially positive effects of job destruction on firm profits and the
cleansing of low-quality jobs. To quantify this trade-off, we estimate a general equilibrium
search model that features heterogeneous firm productivity, job-to-job mobility, endogenous
separations, and state-dependent human capital accumulation. To match our reduced-form es-
timates, the model requires that a spike in aggregate job destruction congests the labor market,
reducing workers’ ability to find new jobs and limiting their human capital growth. Our re-
sults suggest that preventing the destruction of even low-productivity jobs can mitigate output
losses from recessionary shocks.
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1 Introduction

Recessions in the United States are often marked by an initial burst of job destruction.1 While
workers who lose their jobs during this time experience much larger and more persistent earn-
ings losses than in expansions (Davis and von Wachter, 2011), it is unclear to what extent these
costs are caused by the concentration of layoffs in a short period of time. Theories of Schumpete-
rian cleansing predict that employment contraction during recessions disproportionately occurs
at low-productivity firms, allowing labor to reallocate to more productive employers. The high
cost of job loss during recessions may merely reflect the selection of which firms destroy jobs.

However, if market imperfections limit the creation of high-quality jobs, spikes in layoffs may
congest the labor market by lowering the rate at which unemployed workers can find better jobs
(Fujita and Ramey, 2007; Coles and Kelishomi, 2018; Mercan et al., 2024). The general equilibrium
effects of job destruction would then result in spillovers that increase the cost of employment loss
during recessions, making it potentially valuable for policymakers to save existing jobs. Yet, de-
spite its importance, little work has been done to empirically quantify the size of these labor mar-
ket spillovers, largely because the equilibrium effects of job destruction are difficult to disentangle
from the underlying productivity shocks that lead firms to lay off workers during recessions.

In this paper, we provide novel evidence on the magnitude of job destruction spillovers and
use our estimates to quantitatively assess the value of preventing job loss during recessions. To
estimate the causal effect of job loss on the equilibrium conditions of local labor markets, we
develop a research design using granular firms and implement it using administrative employer-
employee microdata from the U.S. Census Bureau. A one percentage point increase in the annual
job destruction rate amplifies the earnings cost associated with job loss by 4% relative to the sample
mean, leading displaced workers to lose an additional $700 in each of the following six years.2

Factoring in spillover effects on the average employed worker, the marginal job loser imposes a
total cost of approximately $17,000 per year on all other workers in the labor market, which is
about 90% of the individual cost of job loss during recessions.

We calibrate an equilibrium job-ladder model with heterogeneous firm productivity, endoge-
nous separations, and human capital depreciation during unemployment to quantitatively match
these facts. The model implies that benefits to firms, through cheaper hiring and lower equilib-
rium wages, are less than the negative worker spillover effects we estimate. Because firms do
not gain as much as workers lose, realistic job destruction shocks lead to a meaningful loss in
labor market output. As a result, preventing greater job destruction can help lower the cost of
recessions, which we assess by studying the transition dynamics of our model following negative
aggregate productivity shocks.

We begin our analysis with a stylized model to illustrate the key channels by which job loss can
impact the labor market (Section 2). We decompose the aggregate output effects of a worker layoff

1Following Davis and Haltwanger (1992), we define job destruction in terms of establishment-level employment
contractions.

2All earnings are in terms of 2015 U.S. dollars.
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in terms of (i) the partial equilibrium “cleansing” effect from the destroyed job, (ii) spillovers on
other workers through changes in market equilibrium, and (iii) spillovers on firm profits. Our
empirical analysis is focused on estimating the second channel, while we use the enriched quan-
titative model to evaluate the importance of the first and third channels.

Estimating the magnitude of worker spillovers requires isolating the effects of elevated job de-
struction from changes to the marginal productivity of labor. This is challenging as many of the
economic shocks that lead a large fraction of workers to be laid off likely also impact the earnings
of other workers in the same labor market, even if the layoffs had not happened. For example,
due to the steep decline in housing demand in certain regions during the 2007–2009 recession,
the construction sector experienced a spike in job destruction along with a large reduction in the
profitability of new jobs. As a result, across local markets, the future earnings of displaced con-
struction workers may be negatively correlated with the local job destruction rate even absent any
meaningful spillover effects.

The ideal variation to identify equilibrium spillovers would be to compare the outcomes of
similar workers across labor markets that vary only in the size of random job destruction shocks
(i.e., deviations of the local rate relative to its level in steady-state equilibrium). We approximate
this experiment by using quasi-random variation in exposure to the idiosyncratic job destruction
of large, national firms across labor markets. Company-specific workforce decisions, financial
constraints, and productivity shocks imply that the layoff rate among geographically distant es-
tablishments is correlated within firms. Because these companies exhibit large local employment
shares, firm-specific contractions can induce granular shocks to the local job destruction rates un-
related to local market conditions. By controlling for industry-time and city-industry fixed effects,
the firm-level variation we use comes from fluctuations in the job destruction rate that are orthog-
onal to industry loadings on the business cycle or regional differences in the long-run level of local
job destruction in our sample.

In Section 3, we implement our research design using administrative data from the U.S. Census
Bureau. We observe the quarterly worker earnings in the near-universe of private sector jobs in 24
states from 1994 to 2020. For each local labor market –— defined as a city-by-industry pair (e.g.,
retail trade in Boston) –— we measure the exposure to national-firm job destruction activity as
the average of national firms’ job destruction rates in other regions, weighted by each firm’s ex-
ante share of total employment in the local market. We then use this measure as an instrument to
estimate worker outcomes up to six years following job destruction shocks to local labor markets
in our panel data.

Our empirical design identifies the causal spillover effects of job destruction shocks if our shift-
share instrument does not systematically vary with shocks to any other determinants of worker
outcomes (Borusyak et al., 2022). This condition would fail if, within sectors, certain national
firms predominantly open establishments in regions where local demand or labor productivity
are relatively sensitive to aggregate shocks.

Two balance tests support the validity of our identifying assumption. First, under our base-
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line specification, the market-level instrument shows no meaningful relationship with the job de-
struction rates of the establishments belonging to single-region firms, which are likely sensitive
to shocks to local economic conditions. Second, the national job destruction rate of the largest
local employer does not predict the national job destruction rates of other firms that operate in
the same labor market. Any violation of our identifying assumption must therefore result from
shocks to local conditions that are correlated with the job destruction activity of a particular firm
but uncorrelated with the shocks affecting other firms in the same labor market.

We apply our research design to estimate the spillover effects of job destruction on workers’
short- and medium-run labor earnings (Section 4). Our primary sample is composed of workers
who separate from their jobs during a mass layoff between 1997 and 2014. In line with existing lit-
erature, we define the cost of job loss as the difference between the earnings trajectory of displaced
workers and closely matched control workers who remain employed for at least one year (Jacob-
son et al., 1993a; Flaaen et al., 2019). In our baseline specification, we estimate that a 1 percentage
point (pp) increase in the annual local job destruction rate results in a persistent 1.2 pp reduction
in total earnings of the job loser, relative to their pre-displacement earnings. Approximately half
of the total spillover effect is driven by extended periods of nonemployment, while the remaining
half is due to lower earnings upon reemployment. We show that our estimates are robust to var-
ious alternative specifications and are not primarily driven by local demand effects arising from
reduced consumption following job loss.

The congestion effects that arise from job destruction are not confined to displaced workers.
In Section 5, we use the same empirical design to estimate that the average employed worker
in a labor market with a positive 1 percentage point (pp) job destruction shock experiences a
0.2 percentage point reduction in annual earnings growth over six years due to the decline in
labor market conditions.3 Combined with our results for job losers, an additional job lost has an
annual $17,000 negative spillover on all other workers in the labor market, roughly one third of
which is due to the costs on recent job losers and unemployed workers.4 Furthermore, removing
the contribution of job destruction fluctuations from the earnings effect of job loss would reduce
its covariance with the business cycle by one-third, in line with the fraction of unemployment
volatility accounted for by inflows from separations (Shimer, 2012).

Our empirical results show that a large fraction of the total cost of job loss on workers is the
result of spillovers of individual separation decisions on labor market tightness, especially during
aggregate downturns. It is more difficult for workers to search for better jobs at a time when many
other workers in the same labor market are also doing so. However, one cannot conclude that job
destruction during recessions is inefficiently high from the reduced-form results alone. This is
because the earnings estimates do not capture the positive impact that job destruction may have

3In contrast to the spillover effects on job loss, most of the impact on the average employed worker is concentrated
in the first few years following the shock.

4This estimate comes from averaging the spillover effects for the average worker and spillover effects for unem-
ployed workers, under the assumption that spillovers on workers without a job are similar to those of recent job losers.
Section 5 provides details on this approximation.
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on firm profits, which are not measured at the same precision and frequency in U.S. administrative
data as earnings. Both incumbent employers (who could dissolve low-surplus jobs) and new
employers (who may find it easier to hire new workers at lower wages) could experience benefits
from higher job destruction in the form of lower wages and cheaper hiring that could dominate
the worker-level costs revealed by our spillover estimates.

We address this question in Section 6 by developing a structural model of labor market dy-
namics. Our first technical contribution in the quantitative analysis is to extend partial equilib-
rium job-ladder models (Jarosch, 2023; Krolikowski, 2017) to general equilibrium settings in which
the worker distribution and market tightness are endogenous. To generate job destruction from
recessionary shocks to the marginal product of labor, we also allow separation decisions to be
endogenous to stochastic job productivity (Mortensen and Pissarides, 1994).

In the model, job destruction shocks can impact market tightness due to limits on the creation
of new jobs: a fixed mass of firms face convex costs in vacancy posting. When the labor market
becomes congested, workers struggle more to find jobs, which also erodes their human capital
through scarring effects. Employed workers also experience lower earnings growth since they
face greater difficulty advancing up the job ladder by switching employers and may have wages
indexed to an outside option of unemployment.

Calibrating these spillovers to our empirical estimates on earnings is difficult because it re-
quires solving for transition dynamics in a setting where the equilibrium is not block recursive in
market aggregates. Moreover, because the structural parameters that determine the steady-state
wage distribution also impact the propagation of job destruction shocks, it is undesirable to split
the estimation of the steady-state and dynamic equilibrium, as is commonly done in past work
(e.g., Audoly, 2023). Our second technical contribution is to provide a feasible approach in jointly
estimating the steady-state and dynamic earnings moments for quantitatively rich job ladder mod-
els. We draw from recent advances in continuous-time heterogeneous agent models to compute
the first-order transition dynamics from an impulse to the worker distribution around the steady-
state equilibrium (Bilal, 2023). We find that our calibrated model is able to generate job destruction
spillovers on earnings and employment that are consistent with our empirical estimates.

We then use the model to evaluate how much of the decline in worker earnings reflects a
transfer to firms through lower equilibrium wages (Section 7). Our preferred calibration suggests
that, following an exogenous job destruction shock, less than half of the negative spillovers on
worker earnings is compensated by benefits to firms in the form of lower wages. The remaining
portion represents the productive loss from labor market spillovers, driven by the persistence of
unemployment; changes in the composition of available jobs; and human capital depreciation due
to less time spent employed.

Finally, we apply the model to assess the value of job preservation during recession events. We
consider the first-order, deterministic transition dynamics following a negative shock to aggregate
productivity. To isolate the role of spillovers, we consider a policymaker who can directly set the
separation rate of low-productivity jobs to offset the rise in unemployment. We find that the
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cumulative output loss over the transition path is 10% lower when the planner retains lower-
productivity jobs. As a result, the costs of congestion prove to be stronger than the benefits of
facilitating labor reallocation through unemployment. Our counterfactual exercise suggests that
policymakers may find it valuable to stabilize output by directly saving jobs during recessions.

1.1 Related literature

Our estimates suggest that the spillover effects of job destruction play an important role in the
worker costs of business cycles. Past work has documented that workers who lose their jobs
during recessions experience a large and persistent decline in earnings compared to observably
similar workers who retain their jobs (Jacobson et al., 1993b; Davis and von Wachter, 2011; La-
chowska et al., 2020; Schmieder et al., 2023; Bertheau et al., 2023). As noted by Davis and von
Wachter (2011), standard search models (e.g., Mortensen and Pissarides, 1994) cannot easily re-
produce the magnitude, persistence, and countercyclicality of earnings losses found in the data.
Features such as heterogeneity in job separation rates (Krolikowski, 2017; Jarosch, 2023), worker
scarring effects (Huckfeldt, 2022; Jarosch, 2023) and firm- or sector-specific human capital (Burdett
et al., 2020) can allow search models to better explain these earnings effects in partial equilibrium.
Our paper complements this work by showing that the general equilibrium effects of elevated job
destruction contribute to the countercyclical earnings losses. Relative to other proposed market-
level channels of job loss (Huckfeldt, 2022), job destruction spillovers are more amenable to policy
intervention that can reduce workers’ short- and long-term exposure to economic downturns.

The general equilibrium forces we document provide new evidence on the importance of
job destruction shocks in unemployment fluctuations over the business cycle (Elsby et al., 2009;
Shimer, 2012). Recent work, summarized in Hall and Kudlyak (2021), has emphasized how, in
search models where the job-finding rate is a decreasing function of the stock of unemployed
workers, transitory shocks to job destruction rates can cause a persistent decline in the equilib-
rium market tightness.5 We contribute to this work by providing causal evidence that, consistent
with these models, increases in job destruction rates reduce the equilibrium job-finding rates of
workers. Our estimates improve upon past work using structural VAR models to estimate con-
gestion effects in aggregate time series data (Fujita and Ramey, 2007; Coles and Kelishomi, 2018;
Mercan et al., 2024) as well as event-studies that study regional effects from a small sample of
establishment mass-layoff events (Gathmann et al., 2020).6

Finally, our paper relates to the extensive literature studying labor reallocation over the busi-
ness cycle (Davis and Haltwanger, 1992; Haltiwanger et al., 2018, 2021). The increased disper-
sion in the firm productivity distribution (Bloom et al., 2018) and higher job destruction rates

5Examples include models in which new hires are imperfect substitutes with incumbent workers (Mercan et al.,
2024), vacancy costs are convex (Fujita and Ramey, 2007), there is an inelastic supply of entrant firms to replace exiting
firms (Coles and Kelishomi, 2018), or heterogeneity in the productivity of job seekers that is unobservable to vacancy-
posting firms (Restrepo, 2015; Engbom, 2021).

6Our estimates may also be useful in understanding the labor market effects of secular shocks, such as from trade
normalization with China (Autor et al., 2014; Pierce et al., 2024) or the adoption of automating technologies (Acemoglu
and Restrepo, 2020; Beraja and Zorzi, 2024; Lehr and Restrepo, 2022).

6



among low-productivity firms lead to cleansing effects in recessions (Caballero and Hammour,
1994; Mortensen and Pissarides, 1994; Ilut et al., 2018; Hershbein and Kahn, 2018), which has
led some to argue against countercyclical job retention programs (e.g., Barrero et al., 2020). On
the other hand, reallocation during recessions can impose large and persistent costs on local la-
bor markets most exposed to structural change (Chodorow-Reich and Wieland, 2020). Our paper
quantifies an additional cost of countercyclical labor reallocation: the spillover that a job loser
may have on other agents in the economy.7 The equilibrium effects we estimate suggest that one
of the primary rationales provided by the literature on why unemployment insurance (UI) bene-
fits should rise in recessions — that workers searching harder to find a job may congest the labor
market (Landais et al., 2018a,b) — also applies to job preservation.8

2 Qualitative Model

To help contextualize our empirical results and describe our analysis, we describe job loss in a two-
period version of the standard Diamond-Mortensen-Pissarides (DMP) model where we replace
free entry with convex costs to job creation. In this setting, job destruction spillovers arise through
general equilibrium effects on market tightness. We later quantify this key mechanism through
the lens of the dynamic model described in Section 6.

Setup. In period t = 1, a fraction u of workers are unemployed and search for new jobs. The
remaining 1 − u workers are employed and produce p units of the consumption good, in return
for a wage w. A representative firm creates new positions ν subject to convex costs that can be
filled by unemployed workers. Matching between firms and workers is subject to search frictions:
the total number of matches is determined by the function M(u, ν), which is increasing in both
inputs. In the terminal period t = 2, workers receive an endowment W2 if they enter the period
employed, and U2 < W2 if they are unemployed. The firm similarly receives J2 > 0 for each
employed worker. We assume no discounting of the future and normalize the home production
of unemployed workers at t = 1 to zero.

We define market tightness as the ratio of available jobs per unemployed worker, θ := v/u.
High levels of θ reflect better employment conditions for workers, and vice versa for the firm. La-
bor market tightness is determined in equilibrium by the job creation of the firm, which maximizes

7Recent work has attempted to measure the value of job-retention policies in the context of short-time work (STW)
schemes in various European countries (Boeri and Bruecker, 2011; Cahuc et al., 2021; Kopp and Siegenthaler, 2021;
Giupponi and Landais, 2022). Such policy variation does not exist in the U.S. due to the limited availability and take-
up of these programs (Abraham and Houseman, 2014; von Wachter, 2020a). Among these papers, only Giupponi
and Landais (2022) analyzes the equilibrium effects of STW subsidies. Our paper focuses on estimating labor market
spillovers with respect to worker-level outcomes instead of firm-level outcomes, which maps more closely to the labor
market congestion externality that helps determine whether such policies would be effective in the U.S.

8Some papers test for the presence of equilibrium labor market congestion following changes to the generosity of
UI (Marinescu, 2017; Johnston and Mas, 2018; Lalive et al., 2018) or the availability of job placement assistance (Crépon
et al., 2013). Whereas these studies focus on changes in the reservation wage of search effort of workers who already
unemployed, they do not speak to the equilibrium effects of changes in the employment state of workers, which is the
focus of this paper.
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expected profit taking the market tightness and unemployment as given:

Π1(θ, u) = (1 − u)J1 + max
ν≥0

vq(θ)J2 − C(ν)

where q(θ) = M
ν is the probability of a match that the job is filled and J1 = p − w + J2 is the value

of existing jobs to the firm. Job creation costs C(·) are assumed to be convex: C′(·) > 0, C′′(·) ≥ 0.
Firm profits are maximized on an interior solution in which the expected value of a new job is
equal to its marginal cost: q(θ)J2 = C′(ν). The value of employment and unemployment at the
beginning of t = 1 is given by: W1 = w1 + W2 and U1 = f (θ)W2 + (1 − f (θ))U2, where f (θ) = M

u

is the job-finding probability for unemployed workers.
Total expected output can be decomposed at t = 1 into terms of the value received by unem-

ployed workers (U), employed workers (W), and the firm owner (Π):

Y(θ) = uU1(θ) + (1 − u)W1(θ) + Π1(θ, u)

To close the model we assume that wages are determined by Nash bargaining, so that they are set
for the following to hold:

W1 − U1 = βS1, (1)

where β is the bargaining power of the worker and S1 := W1 + J1 − U1 is the job surplus.

Job destruction. We model a job destruction shock dsi as the reallocation of some employed
worker i employment to unemployment at t = 1.The following Lemma characterizes its effect:

Lemma 1. Let 1 − ω f = ∂ log f (θ)
∂ log θ ≥ 0 be the elasticity of the job-finding rate to market tightness ξv =

∂ log C′(v)
∂ log ν be the marginal cost elasticity with respect to ν. The total effect of a job destruction shock can be

expressed as:

dY
dsi

=− S1︸︷︷︸
Private surplus

+

[
u

∂U
∂ log θ

+ (1 − u)
∂W

∂ log θ

]
∂ log θ

∂u︸ ︷︷ ︸
Worker spillover

+
∂Π

∂ log θ

∂ log θ

∂u︸ ︷︷ ︸
Firm spillover

. (2)

where:

∂U1

∂ log θ
= (1 − ω f ) f (θ) [W2 − U2] ,

∂W1

∂ log θ
= (1 − β)

∂U1

∂ log θ
,

∂ log θ

∂u
= − ξv

ξv + ω f
u−1, (3)

and ∂Π1
∂ log θ = −(1 − β) ∂U1

∂ log θ − ω f u f (θ)J2.

The two lines of (2) reflect the channels by which job destruction and impacts aggregate pro-
duction. The first term captures the partial equilibrium effect of the job destruction shock, which
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is the lost private surplus of the separated job.9 The remaining terms reflect the spillover effects
that job destruction has on output through general equilibrium changes in labor market tightness.
The first of these terms is the total spillover onto workers, which stems from a decline in mar-
ket tightness as the number of jobseekers increases. The second term is the firm spillover effects,
which reflect both higher profits from lower market tightness effects and changes to the cost of job
creation as a result of the increase in unemployment. One can understand these spillovers as the
changes in the value of each state holding the distribution fixed.

There are two basic ways in which workers are affected by the equilibrium of the job destruc-
tion shock. The first is through the job-finding rate: lower market tightness makes it more difficult
for workers to find new jobs. The second is through changes in the worker’s outside option, which
reduce their wages. In a tight labor market (high θ), workers can bargain a larger share of their
job’s production. These two terms capture the extensive and intensive margin effects of labor
market tightness on worker earnings, respectively.

Equation (3) analytically characterizes the response of market tightness to job destruction. For
job destruction to have worker spillovers, the marginal cost of creating a new job must be rising
in the number of jobs. The elasticity ξv captures the ease by which firms can create new jobs. In
standard models with free entry from fixed costs to job creation (ξv = 0), an additional job seeker
has no impact on equilibrium market tightness.10 In the case where new jobs are rationed (ξ → ∞),
the marginal job seeker completely crowds out another worker, with market tightness response
∂ log θ

∂u = − 1
u .11

The insights from this stylized model help inform our analysis in several ways. First, worker
spillovers can be represented as changes to the value of their current employment state, which we
approximate as the present-discounted value (PDV) of earnings in estimation (Section 3). Second,
in the presence of convex hiring costs, we expect jobseekers (like recently laid-off workers) to
be most affected by labor market congestion (Section 4). Third, understanding the full effects of
job destruction in the labor market requires evaluating the firm spillover effects and the private
surplus lost, which we perform in a quantitatively enriched version of the model (Section 7).

3 Research Design

We estimate job destruction in the United States between 1997 and 2014. The 2001 recession,
normalization of trade relations with China (Autor et al., 2013), and the Great Recession resulted
in significant variation in the aggregate rate of job loss. To distinguish job destruction spillovers
from the direct effect of productivity during this period, we implement a regional design in which

9When separations are endogenous, bilateral efficiency of the wage mechanism (1) implies that firms would only
choose to terminate jobs for which S1 < 0. We allow for endogenous separations in the quantitative extension.

10In this case, the market-tightness is pinned down by the fixed cost for a new job, so that any increase in unemploy-
ment is offset by an increase in job created by the firm.

11Under the Hosios condition, where ω f =
W2−U2

J2+W2−U2
, the equilibrium is efficient. As a result, the spillovers on firms

and workers from the marginal job lost cancel out and there is no welfare cost from lower tightness, despite convex job
creation costs.
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we estimate the effects of job destruction on workers across local labor markets. Since we expect
most equilibrium costs to fall on individuals working in similar jobs to those destroyed, our cross-
sectional results are informative of aggregate worker spillovers.

3.1 Data

We measure earnings and job destruction using data from the Longitudinal Employer-Household
Dynamics (LEHD) program of the U.S. Census, which collects employment data from quarterly
unemployment insurance (UI) records across all 50 states and the District of Columbia. Our data
come from 24 states that collectively account for 45% of private-sector employment in 2015.12 The
LEHD also includes auxiliary data on demographic information (e.g., age, sex, race, and resi-
dential census tract) as well as employer characteristics (industry, location, and federal tax filing
identifiers). We can also observe whether the worker is employed at any job covered by UI in the
United States, which enables us to track entry into and out of our sample. Our main samples are
constructed from employment data between 1994 and 2020.

Employer identifiers in the LEHD are state-specific and can change following business reor-
ganizations. We link employer identifiers across states by augmenting an internal bridge from
the U.S. Census that connects tax identifiers in the LEHD with those in the Longitudinal Business
Database (LBD). We define a firm ( f ) using the LBD parent firm identifier, which is more consistent
over time and better reflects operational control than the tax-filing identifiers in the LEHD.13

We define a job as a worker-firm pair with positive earnings in the LEHD. The job with the
highest earnings in quarter t − 1 is defined as the worker’s primary job at the start of quarter t.14

The worker’s primary employer is the firm associated with their primary job. We assign each
worker to a local labor market (m) based on the region-by-industry combination of their primary
workplace at the start of t. In our main analysis, the region is defined using the 2015 core-based
statistical area (CBSA) definitions, and the industry is categorized at the two-digit economic sector
level using the 2017 North American Industry Classification System (NAICS) codes. We refer to
firm-industry-region combinations as establishments.15

12States approve U.S. Census projects on an individual basis. We list the states included in our sample in Appendix
C.1.

13We define firms according to the Census lbdfid value. Linking the worker data to firm definitions in the LBD
has the added benefit of correcting for spurious changes in job transitions that are not caught by the pre-processing
performed in the construction of LEHD job identifiers.

14We do not observe the exact start and end dates of each job. Instead, we infer employment timing from quarterly
earnings, identifying whether the worker is employed at the start of a quarter (positive earnings in t − 1 and t) or the
end of a quarter (positive earnings in t and t + 1), following the approach used in Abowd et al. (2006).

15Our use of establishment differs from the actual place of work, which is unavailable for most states. The LEHD
uses demographic and geographic data to impute establishment (SEINUNIT) identifiers for each job. Our definition of
establishments and local labor markets relies on the worker’s modal industry and region, and we weight observations
by this value when aggregating employment. Most workers have local labor market information with high precision
in our baseline definition. Further details on our sample filters are provided in Section C.3.
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3.2 Market-level measures

We construct firm- and market-level information on employment dynamics by aggregating worker-
level primary job flows. We describe the two primary measures of employment dynamics used in
our analysis.

3.2.1 Local Job Destruction

Our measure of job destruction is derived from the gross flows of primary jobs. For a given
establishment ( f , m) in quarter t, we measure the job destruction rate s f ,m,t as the reduction in net
employment flows over four calendar quarters:

s f ,m,t = max

∑3
h=0

(
Sep f ,m,t+h − Hire f ,m,t+h

)
N f ,m,t−1

, 0

 , (4)

where N f ,m,t−1 is the establishment’s employment count as of t− 1, and Sep f ,m,t+h and Hire f ,m,t+h

are the counts of workers separated from and hired by the establishment in quarter t+ h, based on
observed earnings changes. The market-level (i.e., local) job destruction rate is the employment-
weighted average of establishment rates:

sm,t =

(
∑

f
N f ,m,t−1

)−1

∑
f

N f ,m,t−1 × s f ,m,t. (5)

Aggregating job flows to track employment contractions offers several advantages over us-
ing changes in reported employment levels (e.g., N f ,m,t+3/N f ,m,t−1 − 1), as commonly done (e.g.,
Davis and Haltwanger, 1992). In particular, this approach allows us to filter out earnings changes
unlikely to reflect job search, such as backpay or seasonal employment fluctuations.16 Using flows
also helps us exclude abrupt employment changes due to corporate restructuring (e.g., mergers)
from our measures.17

3.2.2 National firm job destruction

We construct an instrument for the local job destruction rate (5) using variation in the job destruc-
tion of national firms. We define the set of national firms, FN , as those employing more than 10

16We attempt to disregard flows corresponding to temporary (e.g., internships) or part-time positions by considering
a worker employed at the firm-LLM ( f , m) in quarter t only if (i) the worker is prime age (between 24 and 64) and (ii)
it is the worker’s only job with positive earnings during t. For Sep f ,m,t+h, we further require that the worker has been
employed full-time in the job for at least two quarters. We describe the construction of job flows in detail in Section C.2.

17We favor the measure of job destruction (4) over gross separation flows (∑3
h=0 Sep f ,m,t+h/N f ,m,t−1) because the lat-

ter are less informative about labor market congestion caused by job losses. Since 56% of vacancies are for replacement
hiring, many separations do not require firms to create new jobs (Mercan and Schoefer, 2020). As a result, gross flows
are a noisier indicator of “true” job destruction. A potential drawback of our measure is that changes to (4) could reflect
hiring adjustments rather than actual layoffs. However, this mismeasurement is likely negligible: Davis et al. (2012)
use microdata from the Job Openings and Labor Turnover Survey to show that the variation in establishment-level job
destruction during our sample period is primarily driven by layoffs rather than hiring.

11



primary-job workers in at least two states with non-overlapping CBSAs.18 Our shift-share mea-
sure of job destruction in market m uses national firm activity in geographic regions, excluding
the ones that encompass m. For a given national firm f , we define the corresponding national firm
job destruction rate as the employment-weighted average across establishments:

s f ,−m,t =

(
∑

m′ :r(m′) ̸=r(m)

N f ,m′,t−1

)−1

∑
m′ :r(m′) ̸=r(m)

N f ,m′,t−1 × s f ,m′,t−1,

where we take region r(m) of the labor market to be the state(s) covering the corresponding CBSA.
The market-level instrument replaces the establishment-level job destruction rate in (5) with the
national rate of its parent firm:

sIV
m,t = (∑

f
N f ,m,t−1)

−1 ∑
f∈FN

N f ,m,t−1 × s f ,−m,t, (6)

where FN is the set of national firms. Since the denominator of the instrument is the market-level
employment across all establishments, including non-national firms ( f /∈ FN), the employment
shares used to construct (6) do not sum to one.

3.3 Estimating equation

We estimate the structural equation:

yi,t+h = β(h)s−i,m,t + ϕm + Γ(h)
1 XW

i,t + Γ(h)
2 XM

−i,m,t + ϵi,t+h (7)

where yi,t+h is an observed outcome for worker i h quarters after the measure shock at t. To
avoid capturing the employer shocks that might directly affect worker outcomes, we exclude the
worker’s most recent employer from all market-level measures – we denote this adjustment by a
“−i”- subscript, e.g. s−i,m,t. The inclusion of labor market fixed effects ϕm imply that the variation
in the job destruction rate comes from deviation with respect to the within-sample market-level
average. The vector XM

−i,m,t and XW
i,t are controls defined at the market- and worker-level, respec-

tively, that we describe in Section 3.3.2.
We are interested in estimating the coefficient β(h), which captures the dynamic effect of local

job destruction shocks on the worker outcome y. However, local job destruction may be endoge-
nous to market-level conditions that affect worker outcomes through other channels. We therefore
propose an instrument for the local job destruction rate s−i,m,t using the average job destruction
rate of national firms s(IV)

−i,m,t, with the first-stage equation:

s−i,m,t = β f ssIV
−i,m,t + ϕm + Λ1XW

i,t + Λ2XM
−i,m,t + ηi,t+h. (8)

18We enforce the restrictions on national firms at each quarter t, but omit time subscripts for clarity.
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3.3.1 Identification

Identifying the worker-level spillover relies on the conditional orthogonality of idiosyncratic job
destruction shocks to local market conditions.19 Absent worker-specific and leave-out adjust-
ments to market variables, Borusyak et al. (2022) show that the formal condition for the 2SLS
estimate of β(h) from (7) and (8) to job destruction spillovers is:

E

[
∑

∀ f∈FN

s f t · ϵ
(h)
f t

∣∣∣XW
f t , X

M
f t

]
= 0 (9)

where ϵ
(h)
f t , X

W
f t , and X

M
f t are the weighted averages of, respectively, the structural residual, the

worker-level controls, and the market-level controls, with the weights given by the firm f ’s share
of employment in the given market.20 The exogeneity condition requires that, in a given quarter,
the national firms that are shedding employment are not systematically located in markets where,
at this same time, the outcomes of laid-off workers are lower for reasons unrelated to the elevated
rate of job loss.

3.3.2 Baseline controls

Absent any worker-level controls XW
it or market-level controls XM

mt, it is reasonable to suspect that
the instrument we consider does not satisfy the exogeneity condition (9). For example, the eco-
nomic conditions of markets m that operate in more cyclical industries (e.g., construction) will
deteriorate more during national economic downturns. Since these markets are served by firms
that likely destroy more jobs during national downturns, the estimate β(h) will be significantly
non-zero even if is not actually a causal relationship between the cost of job loss and job destruc-
tion. Similar violations occur if firms happen to hire less in places with more job destruction.

To plausibly of the identification condition relies on the following set of controls we include
in our baseline specification for (7). Most importantly, as suggested by the above example, we in-
clude quarter-by-industry (two-digit NAICS) fixed effects, removes variation from industry load-
ing on the business cycle.21

We also include a set of time-varying market-level factors. First, we control for lagged values of
the instrument from the five quarters prior to t. To account for differences in the regional exposure
to aggregate shocks from the local composition of industries, we include a shift-share instrument

19“Idiosyncratic” firm-level shocks could either reflect shocks that are truly at the level of the firm and unrelated
to economic conditions in its different markets (e.g., an exogenous shock to credit supply) or instead be the result of
intra-firm contagion of economic shocks in certain markets to firms’ establishments in other markets. Two sources of
such contagion effects are binding borrowing constraints (Giroud and Mueller, 2019) or rigidities from uniform national
wage-setting (Hazell et al., 2021).

20We describe how our implementation differs from the assumptions underlying the orthogonality condition in Sec-
tion D.3. In general, the differences are small in practice and are orthogonal to the key source of identifying variation
conceptualized in (9). In Section B.1, we provide a formal treatment of the identification condition in an extentson of
the stylized model presented in Section 2.

21The inclusion of the labor market fixed effect ϕm removes static differences in labor market reallocation by firms.
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for both industry employment growth and reallocation following Chodorow-Reich (2019).
In addition. we include the contemporaneous and lagged values of the predicted job creation

rate of national firms, constructed in the same way the job destruction shift-share given by (6).
Intuitively, if a national firm experiences a negative idiosyncratic shock and destroys more jobs –
but would have expanded its employment had the shock (counterfactually) not occurred – mar-
kets more exposed to this firm will experience both an increase in their aggregate job destruction
rate as well as a reduction in their job creation rate. Including the job creation shift-share controls
purges our instrument of extensive-margin variation in job destruction.

To remove correlation in measurement error associated with using changes to employment
growth as a proxy for productivity shocks, we also include a series of controls based on the
weighted exposure of each national firm to local hiring and job destruction activity in other mar-
kets. We also include the sum of the employment shares of national firms to control for differences
in the instrument induced by the employment share of national firms.22

3.4 Validation

3.4.1 First stage

Figure 1 demonstrates that our job destruction instrument is a strong predictor of local job de-
struction. Panel 1a estimates a variant of the first stage (8) at the worker-level, where we replace
the instrument by the leave-out national job destruction rate (s f ,−m,t) and the outcome by the job
separation indicator Sepi,t+h, for h = −12, . . . , 16. The plot shows that, the job destruction activity
of the worker’s firm in other markets is highly predictive of the worker’s own separation proba-
bility.23 The magnitude of this effect signifies that employment adjustments are meaningful corre-
lated across establishments owned by the same parent firm.24 Panel (b) presents a nonparametric
representation of the market-level first stage (8), which shows that national firm job destruction
have significant effects on local labor markets. A 1 pp increase in the exposure measure to national
firm job destruction predicts a 0.75 pp increase in the average market-level job destruction rate,
with an F-statistic of 93.9.

3.4.2 Balance tests for idiosyncratic firm shocks

The exclusion restriction requires that the national firm shocks do not sort into areas with sys-
tematically different unobserved determinants of workers or firm outcomes. Though we cannot

22The conditional orthogonal conditions for shift-share instruments with incomplete market shares require the inter-
action of the employment share with all other controls (Borusyak et al., 2022). We find no change in our results when
using this extended set, and therefore omit the interactions in our baseline specification.

23Compared to workers at non-shocked firms, the job separation rate of workers at shocks firms remains elevated
well beyond the period after the shock. In Appendix Figure A.1, we show that nearly all of this effect after the first two
years is due to elevated separation rates from new jobs by comparing the cumulated separation rates in Figure 1a to
changes in the firm identifiers.

24Appendix Table A1 presents direct evidence to this point. The table shows that, among establishments owned
by national firms in our sample, 32% of the variation in establishment-level job destruction rates is explained by the
identity of the parent firm ( f ). In contrast, the identity of the local labor market (m) explains only 11% of the variation.
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test this condition directly, we can examine whether the employment shocks, residualized against
our baseline controls, exhibit spatial correlation. We develop a series of placebo tests following
the logic that idiosyncratic shocks to the firm should not be predictive of job destruction at other
firms.

Sorting by non-national firm activity If the variation in the firm-level destruction shocks reflect
a response to local labor market productivity, we may also expect that the employment of firms
that operate in only one CBSA (F L) and therefore excluded from the set of national firms (FN),
to be correlated with the instrument. We assess this possibility by estimating the relationship
between establishment-level job destruction and the average job destruction rate of national firms:

s f ,m,t =
10

∑
q=1

β(q)1
{

Q(sIV
−m,t) = q

}
+ Γ′XM

m,t + ϵ f ,m,t, (10)

where
{

Q(sIV
−m,t) = q

}
is an indicator for the decile of the market-level exposure measure (sIV

−m,t

from 6) divided by the local employment share of national firms. Figure 2a provides estimates
of β̂(q) in (10) separately for establishments owned by single-region firms and those belonging to
national firms.25 Compared to the strong response of establishment owned by national firms, job
destruction at single-regions appears to have little relationship with the market-level instrument.

Sorting among national firms Even in the absence of a common shock at the level of local la-
bor markets, it is possible small and large firms load differently on common productivity shocks
(Gertler and Gilchrist, 1994; Crouzet and Mehrotra, 2020). Market segmentation by employer size
or differences in access to capital markets may lead to a non-response of local firms while gener-
ating correlated shocks to national firms that would lead to potential violations of our exclusion
restriction. We examine whether firm-level shocks capture this variation by ranking firms by their
local employment share in a CBSA-NAICS2-quarter cell (R ) and then estimating the correlation
of the largest employer’s job destruction (R = 1) on other firms in the labor market:

s(R)
f ,−m,t = β(R)s(1)f ,−m,t + Γ′Xm,t + ϵ f ,m,t, R = 2, 3, . . . (11)

If the market-level instrument uses job destruction from national firms responding to a common
productivity shock, then we would expect that β(R) > 0.26

Figure 2b presents estimates of β(R) separately for the second-to-tenth largest employers as
well as the average from the remaining national firms (R > 10). As we would expect, the uncon-
ditional correlation between national firm shocks is positive, with magnitudes ranging between
0.04 to 0.15. When we condition on industry-by-quarter and labor market fixed effects, however,

25We perform covariate-adjustment and calculate standard errors following the procedure outlined in Cattaneo et
al. (2024). A very small fraction of multi-region firms that do not pass the restrictions we place in constructing (6) are
excluded, though their response is consistent with single-region firms

26Greenstone et al. (2020) perform a similar exercise to examine the spatial correlation in bank lending.
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we find a precise lack of positive correlation between the national job destruction rate of the largest
firm and that of other large firms that operate in the same labor market. This continues to hold
when we include linear market-level controls that used in our baseline specification. Given that
the top 10 set of national firms make up around 20% of the total employment in the average labor
market in our sample, the lack of correlation in job destruction rates among national firms sug-
gests that these measures can be considered conditionally idiosyncratic from the perspective of
labor markets.

4 Spillovers on the Cost of Job Loss

Having validated the research design, we estimate the causal equilibrium effects of job destruc-
tion. Section 4.1 describes the sample of job losers we use for our baseline specification. Section
4.2 presents our baseline spillover estimates. These estimates are based off comparing the short-
and medium-run earnings consequences of losing one’s job in a mass layoff event across local la-
bor markets with different (instrumented) aggregate job destruction rates. In Section 4.3, we show
that our baseline estimates are robust to a battery of alternative specifications. In Section 4.4, we
examine changes to characteristics of employers as a result of local job destruction.

4.1 Baseline sample and outcome variables of job losing-workers

We describe the individual-level sample used to obtain our baseline estimates. We follow past
work that estimates the earnings cost of job loss by matching workers who separate from their
job during a mass layoff to similar workers in the same labor market that remain employed for at
least one year.

4.1.1 Worker sample

To build a sample of laid-off workers, we start by taking the set of all prime-age workers in the
LEHD that, during a quarter t, separate from their job. We then apply a set of an additional data
filter to ensure that we can accurately measure the worker’s future jobs employment-related out-
comes, which are described in Appendix C.3. The LEHD data do not contain direct information on
whether a separation event is the result of the worker being laid off or choosing to quit.27 Inspired
by the literature on job loss effects (discussed in Section 1.1), we therefore only consider separation
events to be layoffs if they are part of a broader, firm-wide mass layoff event. Following Davis and
von Wachter (2011), we define a mass layoff event as occurring when an establishment of over 50
workers contracts its employment by 30% or more over the following year. As detailed in Ap-
pendix C.4, we pool mass layoff event from the common measurements of employment growth

27In search models with bilaterally-efficient bargaining, a meaningful distinction between layoffs versus quits does
not exist (Shimer, 2012). In reality, the difference in the type of separation matters. For example, Flaaen et al. (2019)
find that workers who claim to have been involuntarily laid off from their job experience substantially greater earnings
decreases than workers who claim to have voluntarily quit.
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used in past work. This procedure yields a sample that consists of 6.525 million job loss events
(worker-quarter observations) corresponding to 6.077 million unique workers in approximately
3,900 market-quarters.28

Matched control sample Studies that estimate the impact of job loss on workers often focus
on outcomes adjusted by a proxy for the counterfactual in the absence of layoffs. This proxy is
typically constructed from matching each laid-off worker with a control worker—an individual
who was not laid off but shares similar observable characteristics and at a comparable job (von
Wachter, 2020b).

For the purpose of estimating spillover effects, it is unclear whether it is sensible to take differ-
ences in job-loser outcomes with respect to a matched, job-staying control worker for two reasons.
First, any selection in which workers get laid off would only threaten the orthogonality condition
of Section 3.3 if the local job destruction rate endogenously induces a change in the composition
of layoffs (e.g. towards less productive workers). But empirically, there does not appear to be a
significant relationship between our job destruction instrument and observable characteristics of
mass laid-off workers (Appendix Table A4). Second, non-job losing workers likely have non-zero
exposure themselves. For example, workers stable jobs may experience reduced earnings due to
a decline in their outside option from lower market tightness. Subtracting off the difference from
matched non-job losing worker would capture how local job destruction rates affect the marginal
cost of losing one’s job, rather than the earnings of job losers, which is likely to be lower.

Given this uncertainty, we present our baseline estimates for both job losers and the matched
control separately in addition to the standard difference. We find a unique matched control for
each job loser i, c(i), within a fine demographic-market-quarter cell that (i) has a similar predicted
separation propensity; (ii) is employed at a stable firm with a growth rate in the (-5%, 5%) range;
and (iii) does not separate from their job for at least four quarters. We provide details on the
matching procedure in Section C.5.

4.1.2 Worker outcome variables

We use data from the LEHD to build variables that describe either the intensive (wages) and exten-
sive (employed or not) margins of their labor market outcomes. These variables do not condition
on the worker staying in the same labor market as the original job destruction shock

We first construct Earni,t, the dollars earnings across all jobs covered by our sample of states
in quarter t for worker i. We define the worker’s base earnings Earnit as their average earnings
among the 12 quarters prior to the job loss event at t for which workers are employed for the
full quarter.For the quarters t + h after the layoff event, we take the ratio Earni,t+h/Earni,t as our
primary measure of the worker’s change in earnings from before the layoff to h quarters after. We

28Following disclosure guidelines from the U.S. Census Bureau, we round all sample counts and estimates derived
from administrative microdata.
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also estimate the dollar-value of the earnings effect by taking the difference between t+ h earnings
and base earnings, Earni,t+h − Earni,t.

To capture effects of job destruction spillovers on the extensive margin of quarterly employ-
ment, we create an indicator for employment, Empi,t+h, that equals one if, in quarter t + h, the
worker has positive earnings across any US state, including those for which do not observe their
precise earnings. We also consider the impact on labor force exit by defining a long-term nonem-
ployment indicator LT-Nonempi,t+h, which equals one if the worker is not observed to be em-
ployed in eight quarters leading up to quarter t + h.

4.2 Results: Job loss spillovers

4.2.1 Path of spillover effects

Figure 3 presents our baselines estimates of the spillover of job destruction onto laid-off workers.
Each point represents the difference 2SLS estimates of β(h) from (7) between our job loser sample
and the matched controls.29 Standard errors are two-way clustered by CBSA and the date of job
loss. In panel 3a, we present estimates where the dependent variable is the earnings ratio, Earni,t+h

Earni,t
,

in the 12 quarters prior and the 24 quarters following the job destruction shock, normalized to
reflect the effect of a one percentage point change in the job destruction rate.30 In the quarter
following the lay-off event, workers who lose their job in a labor market where the job destruction
rate is 1 pp higher experience a 1.2 pp greater decline in average quarterly earnings over the
following 24 quarters. The earnings spillover we estimate is persistent with little sign of recovery:
after six years, job losers in markets with one pp more job destruction have 1.1 (SE: 0.22) pp lower
earnings. Appendix Figure A.2 presents the spillovers separately for job losers and the matched
control group.

In Figure 3b, we estimate the spillover effects on employment for job losers, relative to the
matched control sample. Non-employment accounts for most of the earnings spillover effects we
find: job losers in more shocked labor markets have a 0.96 (SE: 0.33) pp higher chance of being
unemployed after h = 2 quarters. While the employment spillovers decline following the shock,
the effect is still persistent: by h = 24 quarters, workers in more shocked labor markets have a 0.39
(SE: 0.13) pp greater likelihood of nonemployment.

4.2.2 Cumulated earnings spillover effects

Table 1 presents our baseline estimates of the spillover effects when cumulated over the 24 quarters
of the post-layoff event window. Column (1) provides the results from the local projection of the

29In particular, we estimate (7) separately for job losers (β̂(h)JL ) and job stayers (β̂(h)JS ), and present the coefficients as

β̂(h) = β̂
(h)
JL − β̂

(h)
JS .

30To satisfy the limitations on disclosed output, we present estimates from every other quarter when plotting local
projection estimates. When use all coefficients when constructing net present value outcomes.
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net present value (NPV) earnings ratio from h = 0 to h = 24, using annual interest rate of 5%.31

The coefficient in the first row (“Job Loser”) of column (1) implies that a 1 pp higher job destruction
rate decreases the NPV of a laid-off worker’s earnings by an amount equal to 0.3231 (SE: 0.078) of
the worker’s average pre-layoff quarterly earnings.

In the third row (“Difference”) of column (1), we present estimates of the spillover on the dif-
ference between job loser and job stayer earnings, which reflect a discounted sum of the effects in
Figure 3a. Our estimate implies that a 1 pp higher job destruction rate decreases the NPV of losing
one’s job by an amount equal to 0.2618 (SE: 0.050) quarters of pre-layoff earnings. Compared to
the effect of spillovers on job stayers (row 2), our spillover estimates are driven declines in job
loser outcomes rather improvement for job stayers. When scaled by the mean earnings cost of job
loss (6.55 quarters), a one percentage point job destruction shock causes the NPV of job loss effects
to increase by 4.0%.

In column (2), we estimate the earnings spillovers in dollar terms. A 1 pp higher job de-
struction rate leads the costs of job loss to increase by $4,190 (SE: 987), or roughly $700 per year.
When summing quarterly indicators for employment (column 3), we find that job losers in more
shocked labor markets spend an additional 0.128 (SE: 0.029) quarters in non-employment com-
pared to their matched job-stayer. Overall, our estimates imply that laid-off workers experience
significantly greater losses in earnings when searching for a new job in a labor market with a high
job destruction rate.

4.2.3 The role of nonemployment

Mechanically, two channels account for worker earnings spillovers: a greater time spent non-
employed (extensive margin) and lower earnings conditional on employment (intensive margin).
To gauge the relative contribution of each, in Section D.2 we calculate the earnings spillover from
Table 1, column (1) attributable to the extensive margin effect. We find that the extensive margin
accounts for 47% of the estimated 0.2618 quarters of earnings spillovers from a 1 pp shock to the
local job destruction rate.32

The fact that greater nonemployment accounts for nearly of half of the earning spillovers sug-
gests a central role of the job-finding rate in the equilibrium effects we estimate. Workers who
have a more difficult time finding a new job immediately after being laid off tend to become less
attached to the labor force, which can result from being discouraged to look for new work, dura-
tion dependence in unemployment (Kroft et al., 2013), or a loss in job security (Jarosch, 2023).33 In

31We follow Davis and von Wachter (2011) in computing the discounted sum. The estimate of the NPV spillover
effect equals ∑24

h=0 β̂(h) × 1
(1+r)h , where r is the quarterly rate that corresponds to 5% annual interest.

32We provide two caveats to this decomposition. First, because we can only measure employment at the quarterly
frequency, some of the earnings effect that we label as “intensive-margin” reflect nonemployment during the quarter
that the worker is hired. Second, we assume that the income lost from nonemployment spillover at t + h is equal to the
average earnings among the set of workers employed at that quarter for each sample. However, it is possible that the
counterfactual earnings of the margin non-employed worker would be lower than the average employed worker, as
would be the case if workers faced idiosyncratic shocks to their productivity and chose job search effort endogenously.

33It also may be the case that the earnings spillovers reflect are a result of differential selection out of the sample
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Table 1 column (4), we show that at least some of the spillover effect is accounted for by greater
long-term nonemployment: a 1 pp higher job destruction rate increases the probability of experi-
encing nonemployment for 8 consecutive quarters by 0.47 pp (SE: 0.13).

4.3 Robustness of baseline estimates

Table 2 provides evidence that our spillover estimates are robust to adjustments of our baseline
empirical design. We group alternative specifications based on whether they make adjustments to
the shock measurement (A), controls (B), or sample (C and D).

Panel A considers alternative shock measurements. Row 2 provides the spillover estimate
when we do not exclude the worker’s own firm from market-level measurements. We find that
the decline in the spillover effect on job loss costs (−0.2093 from −0.2618) is driven entirely by
estimating a larger spillover effect on job stayers (−0.1185 from −0.0613).34 Row 3 shows that our
estimate changes little if we follow the granular IV construction of Gabaix and Koijen (2019) and
remove the unweighted average of national job destruction rates from the instrument. In row 4,
we show that adjust the window over which we cumulate the shocks: constructing annual flows
starting from h = −2 instead of h = 0 leaves the estimate unchanged.

In Panel B, we consider the inclusion of additional controls to the baseline specification. The
estimated 6-year spillover effects remain unchanged if we include fixed effects for tenure-age-sex
combinations (5), lags in the endogenous measure of local job destruction and job creation (6),
or fixed effects for the worker’s firm (7).35 We find that the estimate declines by 15% when we
include the propensity score for separations that we use to match workers, which may be partially
due to the fact that matched workers with higher separation risk would be expected to face greater
spillovers from local job destruction.

Our estimates are also stable if we consider alternative sample definitions highlighted in Panel
C. In contrast to common practice in the literature estimating job loss costs, we do not condition
on observing the worker following job loss. Reassuringly, our estimates are not driven by sample
exit: conditioning on workers with at least one quarter of earnings following job loss (9) or em-
ployment by the end of the sample period (10) does little to change our estimates. We also see
that the earnings spillovers are not driven by industries that were highly exposed to the global
financial crisis: in row 11, excluding finance, insurance, and real estate (FIRE, NAICS 52/53) and
construction (23) leads to a similar estimate of spillovers as in the baseline specification.

of states for which we observe earnings. We check this possibility by estimating the employment using indicators for
earnings within our sample’s set of states and indicators for the full set of states provided by Census. We find little
differences in employment spillovers between the two measures.

34The lack of adjustments highlights the importance of estimating spillovers at the job level: without excluding the
worker’s own employment history, estimates of the form (28) incorporate direct productivity shocks that workers may
experience through their firm.

35When including firm fixed effects, we include an indicator for the set of workers that have unique employers to
avoid dropping observations.
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4.3.1 Aggregate demand channel

In standard theories of business cycles under incomplete markets, job loss results in lowered local
spending as a result of liquidity constraints. Lower consumer demand makes the creation of new
jobs less profitable for firms, particularly in the presence of wage rigidities. Empirically, regional
evidence on the presence of Keynesian multipliers has relied on the comparison of employment
in non-tradeable industries with significant home bias, such as consumer retail or food services
(Nakamura and Steinsson, 2014; Mian and Sufi, 2014; Chodorow-Reich et al., 2021).

We use a similar logic to evaluate the contribution of demand effects to the estimated earnings
spillovers. We estimate the baseline specification (7) in the subsample of tradeable industries that
include Oil and Gas Extraction (NAICS 21) and Manufacturing (31-33).36 Table 2, row 12 reports
the spillover estimates on six-year relative earnings. Compared to the coefficient of -.2618 from our
baseline specification, we find that a 1 pp job destruction shock leads to -.200 (SE: 0.065) quarterly
earnings effect in tradeable industries.

Alternatively, we can purge our estimates from common loadings on local demand with the
inclusion of CBSA-quarter fixed effects. With these controls, the remaining variation in job de-
struction would come from differences in national firm job destruction shocks across industries
within a city. Row 13 of Table 2 reports that our estimates of the earnings spillovers similarly
declines to -.180 (SE: 0.066).37 The similarity between the estimates from these two alternative
specifications suggests that at least 75% of the spillover effects we estimate cannot be explained
by the effect of job destruction on local demand.

4.3.2 Heterogeneity by separation risk

We estimate significant job destruction spillovers for job losers, relative to job stayers, because
the former are more exposed to greater labor market frictions as a result of elevated job loss. In
Section D.4, we consider an alternative design where, instead of conditioning on job loss, we
estimate the heterogeneity in spillovers among workers with different levels of future separation
risk, which we proxy by their (leave-out) national firm job destruction rate in the following year.
We find that employed workers in the highest quintile of separation risk have greater earnings
losses from elevated market-level job destruction in the following six years (Appendix Figure A.8).
In comparison, there are no spillovers for workers firms with the lowest level of future separation
risk.

36We use two-digit industry definitions to follow our preferred definition of local labor markets. Industry-based
classifications also include Agriculture (11) among the set of tradeable industries (Mian and Sufi, 2014). However, we
exclude worker cohorts from this industry as a substantial fraction of agriculture workers are not covered by unem-
ployment insurance laws underpinning LEHD data collection.

37We omit CBSA-quarter fixed effects in our baseline design due to the possibility that they might represent “bad
controls” – i.e., capture some of the true spillover effects – if a job destruction shock in a given CBSA-sector has negative
spillovers to the labor market conditions in other sectors within the same CBSA.
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4.4 Reallocation across firms

While we document a negative equilibrium of market-level job destruction on worker earnings,
it may be possible some of the worker costs are offset by benefits to firm owners as a result of
greater availability of job seekers or lower wages. Unfortunately, we lack data on firm profits at
the same granularity and frequency that would let us quantify the fraction of worker earnings
reduction that are implicit transfers to firms.38 Instead, we extend our worker-level analysis to
assess whether job destruction induces changes in the composition of firms at which job losers are
employed.39

We consider two firm-related outcomes. First, we construct a measure of a firm’s wage pre-
mium by estimating the firm fixed effects from a decomposition of worker annual earnings Abowd
et al. (1999). We follow the existing literature in constructing estimates of the firm wage premia,
Ψt

f using rolling five-year windows prior to job loss date t.40 We then estimate (7) under our base-
line specification by replacing the worker outcome with the difference in the wage premia of their
primary employer relative to the pre-shock period, Ψt

f (i),t+h − Ψt
i . Importantly, we hold the esti-

amtes of the firm wage premia fixed and restrict to the subset of workers employed at t + h when
estimating the local projection.

Appendix Figure A.3a plots difference between the estimated coefficients for employed job
stayers and job losers, using the national-firm instrument to instrument for local job destruction.
We find that local job destruction shocks drives job losers to join firms with lower wage premia.
Following a 1 percentage point shock to local job destruction, job losers are employed by firms that
pay 1.3% lower earnings premia compared to job stayers three years after the shock. Because firm
wage premia are fixed as of period t, the subsequent recovery is evidence of workers climbing
back up the job ladder over the medium-term. The decline in firm wage premia is consistent
with recent work that finds a significant correlation between job loss costs and changes to firm
wage premia over the business cycle (Schmieder et al., 2023). It also suggests that changes to the
composition of available jobs could be an important source of the equilibrium effects on worker
earnings.

The decline in firm wage premium among job losers can either reflect firms that extract greater
rents from workers or a decline in job productivity. To separate these channels, we use data from
the Census LBD Revenue (LBD-REV) files, which contains annual firm-level measures of revenue,
employment, and payroll for approximately 50% of the jobs in our sample.41 For our measure
of labor productivity, we use the rank of the firm’s revenue per worker within their the primary

38Representative establishment-level data from the Economic Census is collected once every five years. Annual data,
such as from Longitudinal Business Database Revenue files (LBD-REV) are provided at the firm level for a subset of
organizations.

39We provide an evaluation of the total benefits of job destruction within through the lens of our structural model in
Section 7.1.

40Details are provided in Section D.5.
41We have access to revenue files until 2019, so we exclude the 2014 of cohorts from our estimation. In estimating

models with LBD-REV data, we include a dummy variable for whether the worker is missing LBD-REV data in a given
quarter to keep the sample consistent across the entire window.
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four-digit NAICS industry. As a result, our measure is better suited to capture productivity effects
from within-industry reallocation than cross-industry reallocation. Similar to the firm wage, we
use the change in revenue productivity rank relative to the average between h = −12 to h = −1
as our the outcome. In Appendix Figure A.3b, we find that higher job destruction leads job losers
to join firms with lower rank productivity. The similar pattern between the measures of revenue
productivity and firm wage premia spillovers suggests that elevated rates of job destruction may
worsen the reallocation of workers to more productive positions.

When we instead consider the changes in firm composition for the average employed worker
in the labor market, we get a somewhat different picture. Appendix Figure A.4 plots the same
outcomes of changes to firm wage premia (A.4a) and rank labor productivity (A.4b) for a random
sample of workers employed as of t − 1 that satisfy our baseline restrictions. We find that cohorts
in local labor markets with a 1 pp job destruction shock face a decline in firm wage premia over
the following six years, though we are underpowered to detect significant effects. On the other
hand, the rank labor productivity increases for these workers, which is consistent with cleansing
effects of destroying low-productivity jobs (as proxied by the firm).

5 Total spillover effect of job loss

In this section, we evaluate the importance of the worker spillovers for aggregate labor market
activity. We first show that job destruction spillovers significantly contribute to the elevated costs
of job loss during recessions (Section 5.1). We then estimate the effect of spillovers on the average
worker in the labor market (Section 5.2) which help us provide an approximation of overall cost
of a marginal job lost on the labor market (Section 5.3).

5.1 The countercyclical costs of job loss

Our estimates in Section 4.2 isolate the effect of job destruction on the costs of job loss. To evalu-
ate the magnitude of our estimates, we provide a basic decomposition of the contribution of job
destruction to the earnings effect of job loss over the business cycle. Our calculation assesses how
much lower the costs of job loss would be under a counterfactual set of economic shocks that led
to similar decline in productivity no fluctuations in the local job destruction rate.

Let Loss(Est)
it be the estimates six-year relative earnings losses of a worker i in our mass layoff

sample in quarter t, relative to the matched control worker. We construct the counterfactual earn-
ings loss Loss(Smooth)

it , by removing the contribution of local job destruction rate fluctuations from
the earnings loss estimates:

Loss(Smooth)
i,t := Loss(Est)

i,t − β̂ × (s−i,m,t − sm) (12)

where s−i,m,t is the worker’s local job destruction rate at time of separation, and sm is the coun-
terfactually smooth job destruction rate (i.e., the average rate in the LLM over our full sample
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period). The contribution of job destruction, β̂ in (12), comes from our baseline spillover estimate
from Column (1), Row (3) of Table 1. Assuming that our estimates identify the earnings spillovers,
β̂ ×

(
s− f ,m,t − sm

)
provides a lower bound on the contribution of job destruction to the counter-

cyclical costs of job loss.42

Figure 4 plots the time-aggregated series of estimated and counterfactual earnings losses,
along with the local job destruction series, for each quarter in our sample. By comparing the
actual mean job loss effect (green) with the counterfactual effect (yellow), we can see the extent to
which, according to our estimates, the increase in the cost of job during recessions is accounted
for by increased job destruction. In both the 2001 and 2007–09 recessions — which featured large
spikes in destruction rates — our exercise suggests that the cost of job loss would have reached
a peak value that was around 10 − 15% lower had job destruction activity remained flat.43 The
standard deviation of Loss(Smooth)

t is around 25% less than that of Loss(Est)
t , implying that volatility

in job destruction rates meaningfully contributes to time-series variation in the cost of job loss.
Formally, we quantify the contribution of job destruction to the countercyclical costs of job loss

by estimating the following relationship:

Loss(x)
it = α(x) + γ(x)cycle(x)

t + ϵt

where x ∈ {Est, Smooth} and cyclet is some measure of the business cycle. The ratio of estimates
γ(Smooth)/γ(Actual) shows the proportional reduction in the countercyclicality of job loss effects
under the smooth job destruction series. Appendix Table A3 shows this estimate under three
different cyclical indicators.44 Columns (1)-(2), which set cyclet to be the national job destruction
rate, show that more than 40% of the time-series relationship between job loss effects and the job
destruction rate can be accounted for by the causal effect of job destruction itself. Columns (3)-

42A more precise decomposition requires aggregating our local estimates of job destruction to the national level.
However, we consider the aggregate effects of a job destruction shock to be larger at the national level for three rea-
sons. First, our local job destruction rates are measured for CBSA-by-industry local labor market (LLM) definitions, and
therefore ignore the contribution of spillovers from job destruction by workers in adjacent labor markets. In Appendix
Figure A.5 provides evidence indicating that large job destruction shocks lead job losers to reallocate to different indus-
tries and migrate out of their current CBSA. Second, much of the variation we use strips does not account for cross-LLM
demand spillovers, which we expect to be positive (in Section 4.3.1 we discuss the within-LLM effects). Third, in princi-
ple, a nationwide job destruction shock could lead to an endogenous loosening of monetary policy that softens the labor
market impacts of the shock, but are not captured when using regional variation. However, the recessionary episodes
our sample period (2001 and 2007–09) featured interest rates that were close the effective lower-bound, especially once
labor market conditions had reached their respective troughs. While a nationwide job destruction shock could lead to
an endogenous loosening of monetary policy that softens the labor market impacts of the shock that is not captured
by our regional variation, the zero-interest rate environment limits this effect in a manner similar to the aggregation of
regional fiscal multipliers (Chodorow-Reich, 2019).

43Note that in Figure 4, the counterfactual job destruction series exhibits small fluctuations over time. This is because
in our counterfactual exercise, we impose job destruction rates that are flat at the level of a local market. Since different
local markets have different values of sm, and the distribution of mass layoffs across different local markets can change
between quarters, the average of sm among workers in our mass layoff sample is not constant over time.

44Our decomposition does not account for potential feedback effects between the job destruction rate and the business

cycle indicators. The regressions with Loss(Smooth)
it as the dependent variable should thus not be interpreted as what the

relationship between the cyclical indicator and the cost of job loss would have been under the smooth job destruction
counterfactual.
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(4) and (5)-(6) show that around 25% and 36% of the relationship between the cost of job loss and,
respectively, four-quarter real GDP growth and the four-quarter change in the unemployment rate
are due to the spillover effects of job destruction.

Our spillover estimates suggest that a significant portion of the countercyclical costs of job
loss are driven by spikes in job destruction. However, it is important to note that the majority
of the cyclicality appears to be driven by shocks to other factors (such as the productivity of new
jobs). Moreover, the difficulties in job creation (such as from a restriction to credit supply) can help
exacerbate job destruction spillovers, as more jobs are lost at a time when aggregate recruiting is
low.45

5.2 Spillovers on the average worker

Next, we study whether the equilibrium effects of elevated job destruction extend beyond job
losers. We estimate the market-level spillover effects outcome a random sample of 23.5 million
worker-job events that satisfy our baseline restrictions. In contrast to the samples described in 4.1,
we only condition on the worker being employed in the period before the job destruction.

Figure 5 plots estimates β̂(h) of the local projection of cumulative earnings on local job destruc-
tion:

NPV

(
h

∑
s=0

Earni,t+s

Earni

)
= β(h)s−i,m,t + ϕm + Γ(H)

1 XW
i,t + Γ(h)

2 XM
−i,m,t + ϵi,t+h,

where NPV
(

∑h
s=0 Earni,t+s/Earni

)
is the net-present-value of cumulated earnings relative to the

base earnings, and h is the horizon of the at which we measure total earnings. Figure 5 plots
estimates of cumulative spillover effect β̂(h) (blue) for h = 0 to h = 24. Compared to the effects
on job loss (green), the average worker experiences lower and limited earnings reduction. By
four years, the earnings loss appears to stabilize. At six years, we find that the average worker
experience 0.0502 (SE: 0.035) quarters of pre-period earnings loss following a 1 pp increase in the
job destruction rate.46

5.3 Total cost of the marginal job lost

We use our estimates of job destruction spillovers on individual earnings to approximate the total
worker spillover effect of a single job lost.47 Using equation (2) from Section 2, we can express

45An alternative, dampening effect on the magnitude of spillovers during recessions comes from the fact that more
jobs are lost at a time when unemployment is higher, so that the contribution from each job lost is lower (captured by
(3)). Appendix Figure A.6 shows that the total earnings spillovers are larger when the stock of recently nonemployed
is high, which suggests that the amplifying force prevails.

46The six-year effect is no longer significant at the 5% level, which reflect the variance in earnings outcomes that are
cumulated over time. The negative spillover effect for the average worker is significant in the first five years of the
event, with a p-value less than 0.01 in the first two years of the shock.

47This calculation excludes the effect on the welfare whose job is being destroyed, consistent with the construction
of job destruction measure for each worker. Under job destruction decisions that are bilaterally efficient, the worker
would be indifferent between staying at the firm and their outside option.
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the total spillover cost on workers as the spillover effect on job destruction, scaled by how an
additional job lost changes the job destruction rate, ds

d job loser

Spillover Cost of Job Lost =
ds

d job loser
× Nm

 dW
ds︸︷︷︸

1. Effect on employed

+ u ×
(

dU
ds

− dW
ds

)
︸ ︷︷ ︸

2. Rel. effect on the unemployed

 ,

(13)
where Nm is the number of workers in the labor market and u is the unemployment rate. We
rearrange the worker spillover effect terms in brackets in two parts: the average spillover on
employed workers (1) and the relative intensity of spillovers on the unemployed (2).

Connecting (13) to our spillover estimates requires several assumptions. First, we restrict
workers to value employment states Wi according to their expected income stream. This assump-
tion allows to approximate the first-term, dW

ds , by the NPV of six-year earnings loss for the aver-
age worker from Section 5.2 (-0.0502). Next, we impute the second term as the difference in the
spillover effects between job loser and job stayer – Table 1, Column 1 (-0.2618) – in Section 4.2,
scaled by the average unemployment rate in our sample (0.061).48 Implicitly, we expect the pro-
jected earnings effect on the unemployed to be comparable to that of a recent job loser. As our
baseline estimates are in quarters of earnings, we rescale each effect by the base earnings of the
average worker ($15,490) and job loser ( $13,390 ) separately.

As the marginal effect of an additional job loser on the job destruction is ds
d job loser = 1

Nm·(1−u)
by definition, the total cost is independent of market size. Combining these effects, we have that
the estimated total cost of the marginal job lost in our sample is:

1
1 − 0.061

× [0.050 × $15, 490 + 0.061 × 0.2618 × $13, 390]× 100 = $105, 000.

Annually, our estimates suggest that the marginal job loss in our sample imposes a cost of approx-
imately $16,800 per year (1.09 quarters of earnings per year). These estimates thus imply that the
decision of a firm to destroy a job imposes a fairly sizable spillover on workers that participate in
the same local labor market.

While this back-of-the-envelope calculation provides a benchmark to which we may compare
the costs of job-saving programs, several caveats apply to this quantification. First, we implicitly
assume that the spillover effects on the unemployed, relative to the employed, are approximated
by the spillover effects on job loss. Second, our estimates do not capture the full net-present
value of the spillover effects as we restrict the estimates to the first six-year following the job
destruction shock. Third, our estimates do not account for spillover of job destruction on adjacent
labor markets. In general, these simplifications would likely increase the calculated spillover costs
to be a lower bound on the overall effects of job destruction.

48Alternatively, we can use proxy by the number of people unemployed in a given labor market by the estimated
stock of workers whose jobs were destroyed over the previous two years and who had not yet found a job by time t,
Section C.6 details this procedure and calculates this stock of nonemployed to be 0.050 in our sample.
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Our data and research design is not well-suited to measure the spillover effects of job destruc-
tion on firm profits, the third term in (2). Quantifying the firm effects that would be consistent with
the estimated observed worker costs is a key motivation for developing the quantitative model in
Section 6. In Section 7.1, we use our calibrated quantitative model to estimate the firm-side effects,
relative to worker earnings costs, to provide an assessment of the total welfare effects.

6 Quantitative Model

Our empirical evidence suggests that job destruction significant negative spillovers for workers.
But what does the presence of spillovers imply for overall aggregate welfare and policy design?
In this section, we begin to answer these questions by estimating a quantitative labor market
model using our evidence on job destruction spillovers. In Section 7, we apply this model to
determine the overall welfare effects and the implication for employment subsidies in the presence
of aggregate shocks.

The model we develop in Section 6.1 enriches key elements of the stylized environment we
presented in Section 2. Our model extends past work on partial equilibrium job-ladder models
(Jarosch, 2023; Krolikowski, 2017) to general equilibrium settings in which both the distribution
of job productivity and market tightness are endogenous. In order to calibrate the model to the
earnings moments in our data, we allow for on-the-job search and set wages according to the
sequential-auction with bargaining protocol of Cahuc et al. (2006). To study policies that aim to
save jobs, we allow separations decisions to be endogenous and job productivity to stochasti-
cally evolve over time and for unproductive matches to be privately dissolved (Mortensen and
Pissarides, 1994).

6.1 Setup

We model a labor market that is populated by a unit measure of workers and a positive mass
of firms. Firms are owned by a representative capitalist to which all profits are remitted. Time
is continuous and all agents discount the future at rate ρ. Jobs, which we define as firm-worker
pairings, are heterogenous in productivity, which evolves stochastically. The distribution of jobs
is endogenous in the model: it is determined by the recruiting decisions of firms, the evolution
of the productivity for existing jobs, and the job acceptance decisions of workers. Worker are het-
erogeous heterogeneity which includes their employment status, current job productivity x ∈ X ,
human capital h ∈ [h, h], and the index of their outside option r ∈ X . We denote these idiosyn-
cratic states by y := (hy, xy, ry) ∈ Y and the distribution of worker states by gt(y).

6.1.1 Preferences

Workers can either be unemployed, employed, or out of the labor force. When employed, they
supply one unit of labor inelastically in exchange for a wage wt(y). When unemployed, they
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engage in home production to consume b(h) > 0 . When workers exit the labor force, they do
so permanently and receive flow income that is normalized to zero. Both wages and benefits are
denominated in the single consumption good produced by all workers in the economy. Workers
have linear preferences over this consumption good, and do not have access to a savings device.
Lifetime expected utility is expressed as the present discounted value of flow income, conditional
on the workers current state:

Wt(y) = Et

[∫ ∞

0
e−ρ(s−t)wt(ys+t)ds|yt = y

]
where for convenience we allow the wage function wt(·) to reflect benefits when y denotes a state
of non-employment.

6.1.2 Production

Firm operate a production technology that exhibits constant returns to scale in labor, which allows
to express production in terms of the distribution of workers across jobs.49 We define the set of pro-
ductivity states as X = {b} ∪ [x, x], where [x, x] is the bounded interval of employed productivity
states and, with slight abuse of notation, we use b to denote production during unemployment.

A single job produces p(h, x, z) of the consumption good, which increasing in the worker’s
human capital (h), idiosyncratic job productivity (x) and common productivity z ∈ R+. Job pro-
ductivity evolves stochastically according to the diffusion:

dx = µ(x)dt + σ(x)dWx (14)

where Wx is a Wiener process and µ(x) ∈ R, σ(x) > 0 are the drift and volatility of the productiv-
ity process. Human capital reflects recent job experience: it drifts up at rate ψe(h), and down by
ψu(h).

6.1.3 Recruitment

In addition to production, firms decide whether to hire workers for new jobs and whether to
maintain existing jobs. Recruiting by firms is done through posting vacancy for jobs with known
productivity.50 The distribution of new jobs for which firms can recruit is exogenous and denoted

49The constant returns to scale assumption on firms’ production technology implies that our model does not admit
a notion of firm size and that all dispersion in productivity is generated by search and matching frictions. Despite the
fact that firm size plays an important role in labor market dynamics and our research design, we abstract from this
dimension for two reasons. First, wage determination with a nondegenerate firm distribution is intractable without
strong assumptions on the contracting environment (e.g., Bilal, 2022). Second, ignoring the firm size distribution sim-
plifies the mapping between role of job-retention policies and their pass-through to separation decisions. In practice, it
is straightforward to introduce an idiosyncratic state that is distinct from match productivity for the single firm-worker
case.

50When job productivity is unknown, productivity shocks may also capture a “sullying” effect on jobs, whereas less
productive matches are created during recessions Barlevy (2002). In our model, this channel is reflected in job creation
low productivity matches which are only available following declines in the value of unemployment. Engbom (2021)
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by dF(x), and the mass of potential new jobs is normalized to one. Firms advertise jobs of type
x with an intensity vt(x) that depends on the firm’s valuation of the worker-filled-jobs Jt(·), the
current employment distribution, and convex recruiting costs C(vt), where C′(·) > 0, C′′(·) ≥ 0.
They set the advertising intensity to maximize expected profits

Πt(x) = max
v≥0

q(θt)Et[Jt(y)|xy = x]− C(v), (15)

where Et[Jt(y)|xy = x] is the firm’s expected surplus, given the current distribution of workers.

6.1.4 Random search and matching

The allocation of workers to new positions is subject to matching frictions. Unemployed workers
search for work with an exogenous intensity that we normalize to one. Employed workers also
search at an intensity rate ϕ relative to the employed. The aggregate search intensity of work-
ers is given by et = ut + (1 − ut)ϕ, where ut is the unemployment rate. Aggregate recruiting
intensity, which we refer to as vacancies, is given by νt =

∫
x vt(x)dF(x). Search is undirected in

the labor market, where workers and firms successfully meet each other at a rate proportional to
their search intensity. The overall frequency of meetings between workers and firms is given by
Mt = M(νt, et), where the matching function M(·, ·) is weakly increasing in both arguments and
exhibits constant returns to scale.

6.1.5 Wages

Wages are set according to the sequential-auction-with-bargaining mechanism of Cahuc et al.
(2006), modified to allow for renegotiation by mutual consent (Postel-Vinay and Turon, 2010).
For a worker y = (hy, xy, ry), we define the expected present value of production as Vt(hy, xy) :=
Wt(y) + Jt(y), the value of unemployment as Ut(hy), and total job surplus as St(h, x) = Vt(h, x)−
Ut(h). Importantly, the production value and job surplus does not depend on the worker’s bar-
gaining threat point r ∈ X .51 Wages wt(y) are set to satisfy:

Wt(y)− Ut(hy) = St(hy, ry) + β
(
St(hy, xy)− St(hy, ry)

)
(16)

and the firm surplus is the remaining value Jt(y) = St(h, x) − Wt(y) − Ut(h). .52 Worker who
are hired out of unemployment (where St = 0) have a threat point of r = b which reduces to the
standard Nash bargaining protocol.

There are two ways in which the bargaining threat point of workers change. First, they make
contact with new job offers. When a worker in state y meets a new job with productivity x′,

studies this type of mechanism in a setting where elevated separation rates deteriorate match quality through the
additional applications that unemployed workers may send.

51We prove the independence of V in Section E.1.3.
52We provide the recursive representation of worker value in Section E.1.2. In contrast to Cahuc et al. (2006), the

wage is updated continuously due to stochastic movements in job productivity.
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one of three situations may arise. If x′ ≤ ry, then the worker rejects the job match and remains
in state y. If ry < x′ ≤ xy, then worker will use the incoming offer as the new threat point,
allow them to bargain up her wage at the existing firm. This leads to an updated worker state of
y′ = (hy, xy, x′). If x′ > x, the worker will switch to the more productive job and use the previous
firm’s productivity as the threat point for the new match. In this case, the updated worker state
is y′ = (hy, x′, xy). 53 Second, the worker may agree to renegotiate the wage if the firm’s value
Jt(y) falls below their reservation value of 0, but the job surplus remains positive. In this case, the
wages are set so that the worker retains all of the job surplus, which is done from setting the threat
point to the current job productivity, Wt((hy, xy, xy) = Vt(hy, xy). This type of wage renegotiation
implies that the bargaining threat point moves in lock-step with job productivity only when x < r
and dx < 0:

dr = (µ(x)dt + σ(x)dWx) · 1 {x ≤ r} · 1 {dx < 0} , (17)

where Wx is the identical Wiener process as in (14) and we omit the Poisson jumps associated with
job transitions for clarity.

6.1.6 Separations

Existing jobs can be terminated in one of four ways. First, workers permanently exit the labor
market at an exogenous rate κ, at which point they are replaced by a labor market entrant with the
same human capital in unemployment. Second, jobs are exogenously destroyed at rate δ, which
leaves workers in unemployment and firm owners with a scrap value that we normalize to 0.54

Third, workers may quit to a new job with higher productivity
Fourth, firms may choose to destroy a job when it is no longer expected to be profitable, i.e.

when Jt(y) ≤ 0. Our wage mechanism results in bilaterally efficient separations: the jobs that the
firm would destroy are exactly those that the worker would not prefer over unemployment. The
job destruction decision is characterized by the productivity threshold x∗t (h), where any job with
productivity x ≤ x∗t (h) is destroyed for workers of type h and x∗t (·) is defined by the indifference
between the worker’s (and firms) outside options and maintaining the job:

Vt(h, x∗t (h)) = Ut(h) (18)

This form of endogenous job destruction reallocates workers to productive matches when
search effort on the job is lower than when unemployed (ϕ < 1), as workers have a higher chance
to match to new jobs post-separation.

53Succinctly, the wage bargaining mechanism implies that the worker state is updated after a job meeting to ỹ =
(hy, x̃, r̃), where x̃ = max

{
xy, x′

}
, r̃ = max

{
min

{
xy, x′

}
, ry
}

. Since workers only accept job offers if it increases
their expected lifetime earnings, this characterization relies on the fact that the production value is monotonic in job
productivity x, which is shown in Section E.1.4.

54We imply that jobs feature no embodied capital that the firm owners may value. In practice, if jobs require capital
to be maintained, then countercyclical movements in the opportunity cost of a filled job may induce firms to engage in
greater restructuring (Koenders and Rogerson, 2005).
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6.2 Equilibrium

The equilibrium can be succinctly characterized by a coupled system of partial differential equa-
tions. First, the Hamilton-Jacobi-Bellman (HJB) equation characterizing the joint value of produc-
tion during employment, Vt(h, x) and the value of unemployment Ut(h). This equation embeds
the flow production for each possible type of employment along with the continuation value em-
bedding movements in productivity and job transitions. Second, the Kolmogorov Forward (KF)
equation describes the evolution of gt(y) following the idiosyncratic shocks experienced by work-
ers. The following proposition characterizes the equilibrium of the model.

Proposition 6.1. Let Mx(x)[·] be the infinitesimal generator encode the job productivity diffusion (14);
Mj

h(h)[·] encode the human capital diffusion, for j = e, u; Mr(y)[·] encode the bargaining threat point

diffusion (17); η(x) be the base measure of the worker state space Y ; and dHt(x) := vt(x)
νt

dF(x) be the
base measure of the distribution of available jobs. Also, let B∗ denote the adjoint of some operator B. The
recursive equilibrium of the labor market is defined by the following conditions:

1. the vacancy policy for new jobs, vt(·), is determined by the solution (15);

2. worker surplus share, Wt(·), is determined from the bargaining equation (16);

3. firm surplus is given by Jt(y) = Vt(hy, xy)− Wt(y);

4. market tightness θt is the ratio of aggregate recruiting intensity νt =
∫

x vt(x)dF(x) to aggregate
search intensity et = ut + (1 − ut)ϕ;

5. the separation threshold x∗t (h) is determined by the bilateral efficiency condition (18);

6. the sequence of value functions Vt :
[

h, h
]
×X → R

ρVt(h, x) = p(h, x, z) +Mx(x)[V] +M(e)
h (h)[V]− κVt(h, x)− δ (Vt(h, x)− Ut(h)) (19)

+ ϕ f (θ)β
∫ x

x

(
Vt(h, x′)− Vt(h, x)

)
dHt(x′) +

Et [dV(h, x)]
dt

, x ≥ x∗t (h)

Vt(h, x) = Ut(h), x ≤ x∗t (h)

ρUt(h) = b(h) +M(u)
h (y)[Ut]− (κ + κu)Ut(h) +

Et [dUt(h)]
dt

+ f (θ)β
∫ x

x∗(h)
(V((h, x))− Ut(h)) dHt(x)

7. the worker distribution gt : Y → R for t ≥ 0 that satisfy the following set of equations, for the
productive states follows, for x > x∗t (h):

dgt(y)
dt

=IN (y) +M∗
r (y)[gt] +M∗

x(x)[gt] +M∗
h(h)[gt]− (δ + κ + ϕ f (θ)(1 − Ht(xy)))gt(y),
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with employment inflows:

IN (y) =


q(θt)ϕ · dHt(r)

∫
y′∈Y 1

{
hy′ = hy, x′y′ = xy, ry′ ≤ ry

}
gt(y′) dη(y′)

+dHt(x)
∫

y′∈Y 1
{

hy′ = hy, x′y′ = ry

}
gt(y′) dη(y′), if ry > b,

dHt(x)q(θt)ut(h), if ry = b,

and, for x = b:

dut(h)
dt

= (δ + κ)
(

g(h)t − ut(h)
)
− f (θt)ut(h) +

σ(x∗t (h))
2

2
∂xgt(y∗t (h))−M∗

x(y
∗
t (h))[gt]

(20)
where ut(h) := gt((h, b, b)) and g(h)t :=

∫
y 1
{

hy = h
}

gt(y)dη(y) are the unemployment rate and
worker mass for a given human capital level, respectively.

8. the worker distribution additionally satisfies the boundary condition:

gt(y) = 0 for
{

y ∈ Y : x ≤ xy ≤ x∗t (h) or ry > xy
}

.

The HJB (19-6) and KF (7-20) equations, provide a complete characterization of the dynamics
of the labor market – all other endogenous features of the economy depend only on the functions
{Vt(·), Ut(·), gt(·)}. Section E.2 provides greater details and the proof for Proposition 6.1.

6.3 Model Estimation

We estimate the model in three steps. First, we parametrize several of the structural functions in
the model. We then externally calibrate a set of parameters to standard values in the literature.
Finally, we estimate the remaining parameters using method of simulated moments (MSM), using
a combination of analytic expressions (for labor market flows and wage statistics) and simulated
worker earnings paths (for the dynamic job loss estimates). Estimating the model to fit our es-
timates of worker spillovers requires solving the model’s steady state equilibrium as well as the
transition dynamics following a job destruction shock for every evaluation of the parameter space.

6.3.1 Parametrization

We estimate the model in the absence of aggregate risk.55 We make the following parametric as-
sumptions to estimate the steady state of the model. Worker production when employed is set
to be p(h, x, z) = z + hx. We set the diffusion process of idiosyncratic job productivity to follow
Geometric Brownian motion by setting µ(x) = µxx and σ(x) = σxx. We assume that human

55This assumption is relaxed when we consider the stabilizing effects of employment subsidies in Section 7.2.
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capital accumulation and unemployment scarring are both constant drift rates in h: ψe(h) = ψe

and ψu(h) = ψu. We parameterize the matching function as a Cobb-Douglas production function
M (et, νt, ) = Cmeω

t ν1−ω
t where 1 − ω is the elasticity of the job-finding rate with respect to market

tightness θt =
νt
et

and Cm ≥ 0 is the matching efficiency. On the firm side, we set the cost function
to take the form: C(v) = Cv

1+ξ v1+ξ where ξ ≥ 0 is the marginal cost elasticity to vacancy intensity.
Because the scalar factor in the cost function cannot be separately identified from matching effi-
ciency, we normalize Cv = 1. The distribution of new jobs dF(x) is parameterized as Beta(aβ, bβ)

over [x, x], where aβ and bβ are positive.

6.3.2 External calibration

We estimate the model at the monthly frequency. Following the literature, we set the discount rate
ρ to target an annual interest rate of 5%. The labor force exit rate κ is set to match an expected
career length of 35 years. We also allow for the unemployed to exit at an added rate κu that is set
to be half of the employed worker’s exit rate. The matching elasticity to market tightness ω is set
to 0.5 following Moscarini and Postel-Vinay (2021).

6.3.3 Internal estimation

The remaining parameters Ω =
{

b, Cm, β, aβ, bβ, µx, σx, ψe, ψu, ϕ, ξ, δ, z
}

are internally calibrated to
three sets of moments. The first set reflect labor market flows commonly targeted in the calibration
of macroeconomic models of labor search (Shimer, 2005). We use the 2014 Current Population Sur-
vey to construct monthly unemployment-employment (UE), employment-employment (EE), and
employment-unemployment (EU) transition rates, following Engbom (2021).56 Because around
half of job transitions lead to earnings losses, which is excluded from our model, we calibrate the
model to 0.5 of the EE rate. We also include a moment correspond to the ratio between the flow
benefit during unemployment (b) and the average labor productivity of unemployed workers,
which we set to 0.47 following Chodorow-Reich and Karabarbounis (2016).

The second set of moment captures the earnings distribution and average job loss effects that
are often used when estimating partial equilibrium models of worker earnings dynamics (e.g.,
Jarosch, 2023). We target the cumulative, six-year job loss effects on earnings and employment
using estimates in our primary sample of job losers. We additionally target the average difference
in the earnings of job losers when employed and the average cumulated earnings for the average
employed worker. We also target the cross-section distribution of wages by including the ratio
between 90th percentile and the median (P90/P50) along with the median and the 10th percentile
(P50/P10) of quarterly earnings from the sample used to estimate the average worker spillovers
in Section 5.2.

56We rely on the CPS to construct these flows instead of the LEHD for several reasons. First, the quarterly frequency
of the LEHD data yields imprecise measures of labor market flows. Second, we are unable to distinguish between
unemployment and labor force exit in our earnings data.
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The third set of parameters targets the spillover effects of job destruction that we estimate in
Section 4. We target the effect of a 1 pp increase in job destruction on the six-year cumulative
(i) job loss effects on earnings and employment; and (ii) average earnings of employed workers.
The earnings estimates helps discipline the model to generate negative spillovers on workers,
and targeting employment ensures that the job destruction shock is producing an empirically
consistent decline in market tightness.

The first two set of moments only require solving the steady state distribution of the model,
which we do so using finite differences on the discretized state space (Achdou et al., 2022), mod-
ified to account for the endogenous job destruction decision.57 In order to estimate the spillover
effects, we compare the steady-state job loss effects to the effect of a 1 pp unexpected increase in
the job destruction rate at the time of the job loss event. In order to do so, we solve for the tran-
sitions dynamics using a first-order approximation to the Master equation representation of our
economy (Bilal, 2023). Further details are provided in Section E.6.

6.4 Calibration

Table 3 presents the results of the calibration. For each parameter in the internal estimation, we
provide a corresponding moment that serves to identify its value, though all parameters in the
model are estimated jointly. Our calibration appears to fit the wage moments of the model quite
well. In particular, we are able to match the relative earnings spillover the job destruction shock,
though slightly less of this effect is attributed to nonemployment relative to the model. Similarly,
we are able to close match the job loss effects, though earnings loss in the model is slightly higher
than in the data. Relative to the monthly employment flows, our model tends to overstate UE
transitions and understate the separation rate and EE flows.

The negative job productivity drift and large volatility result imply that around half of the
monthly EU rate in the model is attributable to endogenous separations.58 This is made apparent
in Appendix Figure A.7, which shows many of the new jobs created are at the low end of the
productivity distribution and require time to be more productive (µx > 0).

Two forces are important in generating the spillover effects of job destruction. First, we es-
timate a high convexity of vacancy posting. As a result, job creation is less responsive to lower
market tightness. Second, we find a large gap between job learning and unemployment scar-
ring. As a result, the longer time spent in unemployment translates into lower wages and further
pushes down job creation.

Path of job loss and spillover effects While we target the cumulative job loss effects for both
earnings and employment, it is useful to assess whether the dynamic of these effects are consistent

57From the firm’s perspective, the decision to destroy a job is an optimal stopping problem in which the exit value
(Ut(·) is endogenous to market conditions. To account for this nonlinearity, we use an iterative operative splitting
scheme to determine the value function.

58The presence of endogenous separations help generate “slippery rungs” at the bottom of job ladder without the
need to explicitly model separation heterogeneity across jobs, as in Jarosch (2023).
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with the persistence we observe in the data. Figure 6 presents these results over the six-year
period. In the first row, we plot the quarterly spillover effects of earnings (green) and employment
(purple) against the model-implied series. We find that our model generates the same level of
persistence in worker spillover effects for both outcomes, with a magnitude slightly smaller than
the empirical estimates. In the second row, we plot the difference in means of both outcomes
between job losers and job stayers. We find that we are able to produces the same degree of
persistence in job lost costs, though the short-term earnings loss is larger in the model.

7 Welfare assessment

We use our model to evaluate the general equilibrium effects of job destruction on the labor mar-
ket. In Section 7.1, we complement the back-of-the-envelope calculations in Section 5.3 by estimat-
ing the equilibrium welfare effects of an exogenous shock to the rate of job loss. We then consider
the implications of these spillovers during recessions in Section 7.2, where we study the coun-
terfactual output loss when low-productivity jobs are retained to completely offset an increase in
the unemployment rate. In both settings, we denote welfare as the present-discounted value of
production net of creation costs in the economy or, equivalently, the sum of value functions across
all agents (present and future). In the steady state equilibrium without aggregate shocks, the cor-
responding social welfare function (SWF) equivalently in terms of agent values or net output is as
follows:

SWF =
∫

y
W(y)g(y)dy +

∫
y

J(y)g(y)dy +
∫

h
U(y)gh(h)dh +

∫
x

Π(x)dF(x) (21)

=
1
ρ

[∫
y

p(y)g(y)dy −
∫

x
C(v(x))dF(x)

]
,

where gh = (κ + u(h)κu)gt(h) is distribution of labor market entrants, u(h) is the mass of unem-
ployed workers with human capital h, gt(h) is the marginal distribution of human capital, p(y) is
worker production, and v(x) is the profit-maximizing recruiting intensity chosen by firms.

7.1 Employer valuation of job loss

Earnings spillovers from elevated job loss may reflect two different sources. First, they can reflect
per-capita loss in productive capacity from workers (i) remaining unemployed longer, (ii) losing
job-related human capital, and (iii) being matched to worse jobs. Second, the losses may a shift
in job surplus from workers to firms as a result of lower outside options. We use our calibrate
model to distinguish between these two forces and recover the model-implied effect on aggregate
production efficiency.

We assess the aggregate efficiency through the dynamic extension of (21), where we decom-
pose PDV of the first-order effect of the job destruction shock dS:
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dSWF0

dS
=
∫

W0(y)∂Sg(y) dy +
∫

J0(y)∂Sg(y) dy (22)

+
∫

∂SW0(y) dG(y) +
∫ ∞

0
e−ρt

[∫
h

∂SUt(y)gh(h)dh
]

+
∫

∂S J(y) dG(y) +
∫ ∞

0
e−ρt

[∫
x

∂SΠt(x)dF(x)
]

As before, we decompose the welfare effects of the shocks in two parts. The first line is the
partial equilibrium of changes in the worker distribution from job destruction, holding prices
(e.g., vacancies, wages, and market tightness) constant. The cost of workers who lose their job is
the difference between the expected cumulative earnings relative to unemployment, and for firms
it is the future profits lost from the job. The second and third line represent the spillover effects
of the job destruction shock, which alter the valuation of each state. The second term reflects the
total worker spillovers of job destruction, captured by how the valuation of different employment
states change for both existing workers and future labor market entrants. The final term is the
spillover effects on firms, which is determined by changes in the valuation of existing jobs as well
as expected profits from new jobs created in the future.

We evaluate the welfare effects in terms of expected production following a job destruction
shock. Our estimates provide a conservative upper bound on the firm benefits by ignoring the
cost of vacancy creation, which cannot be separately identified from the efficiency in the matching
technology, Cm. As a result, our welfare decomposition is with respect to the quasi-rents of jobs,
which is done by replacing Πt(x) with q(θ)Jt(x) = q(θ)

∫
y:xy<x J(y)g(y)dy in the third line of (22).

Figure 7a provides estimates of the total change in aggregate efficiency for each of these com-
ponents following a one percentage point shock to the job destruction rate. Following a one per-
centage point increase in the job destruction rate among the low-productivity jobs. On the margin,
spillovers account for 62% of the overall lost wages of workers. Comparing the spillover on firms
(profits) with the earnings spillover, we see that employers retain around 48% of every dollar lost
by workers due to spillovers, leading to a net decline in expected production over the duration
of the shock. In Figure 7b, we show the evolution of firm and worker rents over the duration of
the shock. The hump-shaped behavior of profits reflects the fact that the benefit that firms receive
from lower market tightness in the short-run is done by the decline of human capital for workers
as a result of extended non-employment.

7.2 Limiting job loss after negative productivity shocks

The wave of job destruction observed during recessions can help amplify the costs of recessions,
as more workers are displaced at a time when hiring is low. Does this imply that policymakers
should limit the rate of job loss? While mitigating labor market spillovers is valuable, the jobs
that are destroyed are relatively less productive than the ones that survive. Retaining these work-
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ers limits labor reallocation, which can generate the dispersion in the marginal product of labor
across firms (Hopenhayn and Rogerson, 1993). Assessing the value of these job transfers relies on
understanding whether it would be better to mitigate spillovers or facilitate reallocation during
recessions.

Because our model is calibrated to replicate both the dispersion in earnings and the spillover
from job loss, it is well-suited to quantify the value of limiting job loss. We consider an exercise
in which a policymaker can directly influence the separation rate of low productivity jobs. We
then consider the counterfactual output effects of setting policy to keep the unemployment rate
constant, given the realization of a perfect foresight “MIT” shock to aggregate productivity. We
make three remarks on the counterfactual exercise we consider.

First, adjusting the low-productivity separation rate is not equivalent to solve for the optimal
job-retention subsidy. In particular, assumptions on the financing, eligibility, and targeting are
important in setting the optimal employment subsidy. These subsidies can influence additional
channels, including job creation, inefficient separations, and the fiscal externality of unemploy-
ment insurance, which are beyond the scope of the current paper.

Second, we set the primal instrument to maximize an ad hoc objective function (the unemploy-
ment gap relative to steady state) that differs from welfare. Since we solve for transition dynamics
in the first-order linearization of the quantitative model, the model does not capture second-order
nonlinearities that may limit the effectiveness of the nonparametric instrument in reducing out-
put. Instead, our policy exercise shows the consequences of limiting congestion that results from
a rise in unemployment.

Third, additional workers that are “retained” as a result of reducing the low-productivity sepa-
ration rate may extend beyond those that endogenously separate. Following a productivity shock,
unemployment can increase due to both a reduction in outflows (from lower job creation) as well
as an increase in inflows. The policy we consider aims to neutralize both of these margins. In do-
ing so, we are implicitly allow the policymaker to reduce separations below the steady state level
to keep unemployment unchanged.

7.2.1 Aggregate shock

We consider an aggregate shock to the growth rate of job productivity, µx, which reduces aggregate
output through a lower mass of highly productive jobs in the future. We consider an autoregres-
sive aggregate shock of the form: dµx(t) = e−ρµtdµx(0). We set the persistence such that the dµx(t)
is 5% its impact value after 3 years. We then set µx(0) to a target 3% decline in net output in the
first year following the shock. Appendix Figure A.9a plots the drift rate in the first 12 years.

7.2.2 Separation response

We consider the separation from low productivity job: St(y) = st ·
(
1 − R(xy)

)k, where R(·) is the
rank of job productivity between 0 (x) and 1 (x) and s := 0 in steady state. The shape parameter
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k controls the loading of the separation shock on low productivity jobs: higher values of k means
that the separation policy loads more on low-productivity firms. We present results for a moder-
ately large k = 4, which leads to significant loading and lower-productivity jobs. We then solve
for the path separation adjustments {st}t≥0 that minimizes deviations of the unemployment rate
from steady state,

L =
1
2

∫ ∞

t=0
e−ρt (u(t)− u)2 (23)

where u(t) is the unemployment following the aggregate shock to productivity and separations.
Because L is quadratic, the discretized version of (23) admits a closed-form solution, s∗(t), in the
linearized version of the economy (McKay and Wolf, 2023).59

7.2.3 Transition dynamics

Figure 8 presents the transition dynamics following the aggregate shock. In panel (a), we plot the
unemployment rate following the exogenous productivity shock in both the case without policy
(No policy) and under the unemployment-stabilizing policy path (Policy, no congestion). In our
calibrated model, the aggregate productivity shock leads to an approximate 0.5 percentage point
increase in the peak unemployment rate. When we set the low-productivity separations to min-
imize (23), the unemployment rate is kept at its steady state value. Panel (b) shows the policy
path, s∗(t), that minimizes L. To counteract the rise in unemployment, the policy path leads to a
pro-cyclical decline in the separation rate of low-productivity jobs that matches the counterfactual
rise in unemployment.

Panel (c) shows the deviation of expected output for both the labor market without policy inter-
vention and the labor market without congestion effects. Reducing low-productivity separations
reduces the loss at the trough of the output. As a result, output recovers more quickly than the
case without policy. Reducing the low-productivity separation rate reduces the net-present-value
of output loss by 10% compared to the case without policy.

The output effects we capture have two components. The first component comprises of the
general equilibrium effects of lowering the separation rate, which is the sum of the spillovers on
worker earnings and firm profits discussed in Section 7.1. The second component features the
partial equilibrium effect: as some jobs on the margin are weakly positive surplus, reducing their
separation rate directly boosts output. Implicit in this channel is the fact that there are gains from
the planner preventing bilaterally inefficient separations. While not formally estimated, the pres-
ence of bilaterally inefficient separations may result from the fact that the substantial negative
spillovers of job destruction lower the marginal productivity threshold x∗(h), which helps coun-
teract the rise in separations. To match the fluctuations in job destruction we observe in the data,
it is therefore likely that some of fraction of separations that occur during recessions may be bi-
laterally inefficient. The presence of such separations would be consistent with countercyclical
innovations in the separation rate from the aggregate time series (Mercan et al., 2024).

59We provide details of the solution in Appendix E.7.
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The reduced output loss suggests the congestion effects from job destruction outweigh the
benefits of reallocation through unemployment. Panel (d) helps characterizes this difference by
comparing the aggregate cost of vacancy posting between the shocked labor market and the one
with the counterfactual policy response. In the absence of changes in the aggregate search effort, a
negative productivity shock reduces aggregate vacancy creation. However, when the unemploy-
ment rate fluctuates, we see that firms post more vacancies during the recovery than they would
during steady state. Due to the convex costs of vacancy posting (ξ), this increased hiring is insuf-
ficient to offset the rise unemployment, leading to a decline in market tightness (Appendix Figure
A.9).

8 Conclusion

This paper estimates the spillover effects of job destruction on workers in the United States. We
find that job destruction has persistent effects on worker earnings and employment and con-
tributes meaningfully to the countercyclicality of the costs of job loss. The strength of spillovers
suggests a motive to slow down the rate of job destruction during recessions. As a result, the es-
timates of worker costs we provide can help inform the design of effective fiscal policy measures
that mitigate household exposure to aggregate shocks.

Two natural research directions stem from our paper. First, future work should focus on un-
derstanding how the general equilibrium effects from labor market congestion change the optimal
mix of fiscal policy between unemployment insurance expansions and job support programs dur-
ing recessions. The relative value of these two types of policies may depend on the effectiveness
of employment subsidies in preventing layoffs during recessions, which has been the subject of
recent work but not formally examined in this paper (Autor et al., 2022). Second, it is important
to better document the firm response to equilibrium job destruction. For example, the welfare
implications of job destruction shocks may differ if the sluggish response of job creation is due
to firms’ investment in new technology that does not complement the skills of displaced workers
(Hershbein and Kahn, 2018).
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Figures and Tables

Figure 1: First stage effects of national firm job destruction.

(a) Worker separation at shocked firms (b) Market-level job destruction

Notes: This figure displays the relationship between national firm and local job destruction. Panel 1a plots
coefficients from estimating Si,t+h = βs f (i),−m(i),t + ϕm + Γ(h)

1 XW
i,t + Γ(h)

2 XM
m,t + ϵi,t+h for h = −12, . . . , 16

among the sample of workers employed at national firms (FN). The outcome Sepi,t+h is an indicator for
whether the worker i is observed to separate from their primary employer at quarter t + h, accounting for
firm restructuring and name changes, and s f (i),−m(i),t is the national job destruction rate of the worker’s
primary employer. We use the controls from our baseline specification in Section 3.3. The shaded area
represents the period over which cumulate gross flows to construct s f (i),−m(i),t. Panel 1b plots estimates
from the regression sm,t = ∑5

k=1 βkQk(sIV
mt ) + ϕm + XM

−i,m,t + ϵi,t, where Qk(sIV
mt ) is an indicator whether the

market-level instrument job destruction belongs in the k-th quintile. The plotted line corresponds to the first
stage coefficient β̂ f s of (8) without worker-level adjustments (slope: 0.75, SE: 0.08). Local job destruction
rates are measured at the level of NAICS2-CBSA market m. Standard errors are two way clustered by CBSA
and quarter.
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Figure 2: Conditional sorting of job destruction shocks across local labor markets.

(a) Between local and national firms (b) Between national firms

Notes: This figure displays estimates from spatial sorting in firm-level job destruction shocks across local
labor markets. Panel 2a plots coefficients β̂(q) from (10), estimated separately for establishments owned by
single-region ("local") firms and establishments owned by national firms. The predicted effects are plotted
against the average job destruction of national firms in the local labor market. Panel 2b plots estimated
coefficients β̂(R) (11) for national firms ranked R=2 to R=10 in terms of the local employment share in each
labor-market-quarter. We also include a separate group for the average job destruction rate of national firms
outside of the top ten (>10). Both the outcome and regressor variables are normalized to have standard
deviations equal to one. The "Unconditional" series refers to the raw correlations between the leave-out
national firm job destruction rate. The series "LLM, Industry-quarter FE" plots regression-adjusted correla-
tions from including fixed effects for the local labor market (industry-region pair) and for industry-quarter
pairs, where the industry is taken to be two-digit 2017 NAICS code. The series "baseline" additionally
includes the market time-varying controls described in Section 3.3.2. In both figures, standard errors are
two-way clustered by CBSA and quarter.

47



Figure 3: Effects of market job destruction shock on earnings and employment of job losers

(a) Earnings (b) Employment

Notes: This figure shows our local projection estimates of the effect of job destruction shocks on the out-
comes of job losers relative to a match control group of job stayers. Each point represents the 2SLS estimate
of the difference between the spillover effects on job losers (β̂(h)

JL ) and job stayer (β̂(h)
JS ) from (7) under our

baseline specification, reproduced below:

yi,t+h = β
(h)
k s−i,m,t + ϕm + Γ(h)

1 XW
i,t + Γ(h)

2 XM
−i,m,t + ϵi,t+h

for k = JL, KS, h is the quarter relative to the job loss event (t). Coefficients estimates are scaled to reflect a
1 pp increase in the local job destruction rate, s−i,m,t. Panel (a) shows estimates when yi,t+h is the worker’s
average earnings in the adjacent quarters t + h − 1 and t + h, relative to base earnings, Earni,t+h/Earni.
Panel (b) shows estimates when yi,t+h is the an indicator variable whether is employed with strictly pos-
itive earnings at the beginning of the quarter, Empi,t+h. Job losers are matched to job stayers with the
closest predicted separation propensity in the same NAICS2-CBSA-Age-Sex-Tenure cells, where age bins
are over the intervals [25, 30, 35, 40, 45, 50, 55] and tenure bins are over the years [0, 1, 3, 6,> 10]. Details on
the matching procedure are provided in Section C.5. The vector XM

mt consists of the following market-level
controls: two-digit NAICS-by-quarter fixed effects, the share of m’s quarter t employment that is in estab-
lishments of national firms, eight lags of the shift-share job destruction instrument sIV

− f ,mt, the shift-share
job creation instrument (from quarters t − 8 to t) given by (D.1.1), and the predicted employment growth
of the CBSA based from t to t + h (based off aggregate two-digit NAICS growth rates over this horizon
and the CBSA’s quarter t employment shares by sector). The regressions also include time-invariant fixed
effects for the market ϕm. The regressions attach equal weight to each job loser. Standard errors are double
clustered by quarter of job loss t and by CBSA.
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Figure 4: Average cost of job loss, actual versus counterfactual under smooth job destruction rates

Notes: This figure shows the aggregate means of the cost of job loss and job destruction rates for each
quarter in our sample. The green-closed circle line,Loss(Est)

i,t , is the NPV of the difference between the
average six-year earnings of job losers and matched control sample. The yellow-open circle line is this
variable under the counterfactual of a constant local job destruction rate, Loss(Smooth)

i,t , defined in (12). See
Section 5.1 for further details. The solid blue line shows the actual job destruction rate for each quarter,
averaged over the markets of the workers in the job loser sample. The dashed blue line shows the average
of the smooth job destruction series; it equals the average of the market-level mean job destruction rate over
our sample period.

49



Figure 5: Cumulative earnings effect of job destruction shock, job loss vs. average employer
worker.

Notes: This figures plots estimates of the cumulated earnings spillovers for the average worker and job
loser. The average worker effect (blue) consists of coefficients β(h) from the two-stage least-square estima-
tion of (7), using national firm job destruction as the excluded instrument and the NPV of earnings relative
to the pre-shock, ∑h

s=0 Earni,t+s/Earni as the outcome variable. The estimates are constructed from a ran-
dom subsample of worker-date observations described in Section 5.2 and include the set of controls from
our baseline specification. The job loser plot (green) correspond to the difference in spillovers between the
spillovers of the job loser sample relative to the matched control group using the same specification as that
of the average worker effect. Standard errors correspond to the 95% confidence interval and are two-way
clustered by CBSA and shock date t.
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Figure 6: Model vs. Data: Job loss and spillover paths.

Notes: Estimates correspond to the respond of earnings and employment from a 3 percentage point increase
in the job destruction rate. Model-based measures of relative earnings are constructed in the same manner
as the empirical measurements using simulated earnings data at the quarterly for 100,000 workers.

Figure 7: Welfare effects of a shock to job destruction.

(a) Welfare decomposition of Job destruction
shock (b) Net production

Notes: This plots shows the simulated effects of a 1 percentage point job destruction shock on output and
its division between firms and workers. Panel (a) displays the impulse report of output and its division
between The job destruction shock is parameterized to affect low-productivity jobs. The y-axis gives the
percent deviation relative to one month of output in the steady state equilibrium.
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Figure 8: The first-order effects of a negative aggregate productivity shock.

(a) Unemployment rate (b) Policy: Low-x separations st

(c) Output (Net production) (d) Vacancies

Notes: These figures show the response of equilibrium variables following a negative aggregate productiv-
ity shock. The no policy line refers to the first-order transition dynamics around the steady-state equilib-
rium, following a negative shock to the job productivity growth rate calibrated to last 3 years and reduces
net output by 3% in the first year. See Section 7.2 for details.
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Table 1: Displaced worker spillover effects after 24 quarters.

(1) (2) (3) (6)

Earnings (Qtrs) Earnings (USD) Total employment Long-Term
Nonemployment

Job Loser -.3231 –6147 -.1102 .003987
(.07784) (1645) (.03133) (.001313)

Job Stayer -.06132 –1959 .01824 -.0006738
(.0424) (1010) (.01077) (.0004734)

Difference -.2618 –4188 -.1284 .004661
(.05048) (987.1) (.02879) (.001307)

Mean (Job Loser) 16.94 –71410 18 .2837
Mean (Job Stayer) 23.49 13640 22.8 .09559
Mean (Difference) –6.55 –85050 –4.8 .18811

Notes: This table displays our baseline estimates of how job destruction shocks affect the labor market
outcomes of job losers. For a worker i who at the start of quarter t holds a job in local labor market (MSA-
two digit NAICS pair) m, we estimate the cumulated effects, β(sum) from the following adaptation of (7):

ysum
i,t = β(sum) ŝ− f ,mt + ϕm + Γ(sum)

1 XW
i,t + Γ(sum)

2 XM
−i,m,t + ϵi,t

where ŝ− f ,mt is the predicted value from the first-stage regression (8), using national job destruction expo-
sure, sIV

−i,m,t, as the excluded instrument. Rows 1 and 2 provide estimates of the equilibrium job destruction

effects on the sample of job loser (β̂(sum)
JL ) and matched job stayers (β̂(sum)

JS ), described in Section 4.1. Row

3 provides the difference between the job loser and job stayer effects, (β̂(sum)JL − β̂
(sum)
JS ), with standard

errors constructed for the test β̂(sum)JS = β̂
(sum)
JL . The controls are the same as those used in the baseline

specification and described for Figure 3. The outcome variable y(sum)
i,t is a measure of the worker’s cumu-

lative earnings and employment outcomes over the six-year horizon t to t + 24; from columns (1) to (4),
it is set to: (1) the NPV of average quarterly earnings relative to base earnings, Earnt+h/Earn from h = 0
to h = 24; (2) the NPV of the difference between the dollar amount of earnings from t to t + 24 and base
earnings, Earnt+h − Earn; (3) the number of quarters in which the worker is employed over t to t + 24; and
(4) an indicator variable for whether, over t to t + 24, the worker has a stretch of at least eight consecutive
quarters of not being employed. The bottom panel of the table shows the mean values of each of the re-
spective dependent variables. The regressions and means attach equal weight to each job loser and control
pair. Standard errors are double clustered by quarter of job loss t and by CBSA.
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Table 2: Estimates of job destruction on laid-off worker NPV: alternative specifications.

Row Model Description Estimate SE

1 Baseline -0.2618 0.05048

Panel A: Alternative Shock Measurements

2 Include own firm -0.2093 0.07507
Job Stayer -0.1185 0.04371
Job Loser -0.3279 0.07507

3 GIV specification -0.2651 0.05608
4 Measure JDR over t − 2 to t + 1 -0.2522 0.0575

Panel B: Alternative Controls

5 Fine demographic controls -0.2811 0.05061
6 Control for lags of local JDR/JCR -0.2488 0.05195
7 Include FE for worker’s firm -0.2395 0.05402
8 Control for matching propensity score -0.2243 0.0584

Panel C: Sample filters

9 At least one quarter of earnings -0.2601 0.04935
10 Employed by year 6 -0.2685 0.05638
11 Exclude workers in construction and FIRE sectors -0.2712 0.05063

Panel D: Local Demand Contribution

12 Tradable industries -0.2007 0.06436
13 CBSA-Quarter FE -0.18 0.06575

Panel E: Alternative Labor Market Definitions

14 CBSA -0.552 0.1763
15 CBSA × NAICS3 -0.195 0.04432

Notes: This table reports the results of estimating the spillover effects of job destruction on laid-off workers
under alternative specifications. Apart from adjustments described in the “Model Description”, we use the
same baseline specification and report outcomes for the NPV of relative earnings, ∑h=24

h=0 Earni,t+h/Earni.
Row 1 replicates the result from Table 1, column 1. The description of the remaining rows are provided in
Section 4.3. Standard errors (SE) are two-way clustered by CBSA and date of job loss (t).
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Table 3: Parameter Estimates

Parameter Notation Estimate Moment Data Model Source

Panel A: External Calibration
ρ Discount Rate 0.00407 Annual Interest Rate - 0.05 -
ω Matching Elasticity 0.5 - Moscarini and Postel-Vinay (2021)
κu Labor force exit 0.00245 - -
κu Unemployed Labor force exit 0.00123 - -

Panel B: Internal Estimation
b Unemployment flow value 2.07 Benefit-ALP ratio 0.47 0.237 Literature
z Aggreate productivity 1.64 Unemployment rate 0.0613 0.101 BLS
δ Exogenous Job Destruction 0.0147 EU rate 0.025 0.0148 CPS
ϕ Employed search intenisty 0.0217 EE rate 0.0125 0.000489 CPS

Cm Matching efficiency 0.122 UE rate 0.16 0.195 CPS
β Wage Bargaining 0.533 Job loss effect: Earnings when employed 0.142 0.162 LEHD

µx Log Productivity Drift (-) 0.039 Job loss effect: Earnings 6.55 7.77 LEHD
σ Log Productivity Volatility 0.166 Job loss effect: Employment 4.8 4.58 LEHD

(aβ, bβ) Beta Distribution (32.6,26.8) Wage Dispersion (P50/P10, P90/P50) (0.5,0.52) (0.42,0.354) LEHD
ψe HC: job experience 0.205 Annual wage growth 1.02 1 LEHD
ψu HC: scarring (-) 0.221 Spillover effect: Earnings 0.707 0.713 LEHD
ξ Vacancy posting elasticity 18.6 Spillover Effect: Employment 0.347 0.356 LEHD

Notes: Estimated parameters of the quantitative and moments used for estimation. Panel A lists the parameters that were externally calibrated. Panel
B lists the estimates of the internally calibrated parameters, along with the moment that best identifies it among those jointly used in estimation. All
transition rates (EE, UE, EU) are calculated from the BLS Current Population Survey (CPS).
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Appendices

A Additional Tables and Figures

Figures

Figure A.1: Cumulated Separations since firm shock

Notes: This figure displays the account of cumulated separations that are accounted for by separations
from their primary employer at time t. The series "Difference firm ID" estimates coefficients β(h) from the
following specification:

1 { ft(i) ̸= ft+h(i)} = β(h)s f ,−m,t + ϕm ++Γ(h)
1 XW

i,t + Γ(h)
2 XM

−i,m,t + ϵi,t+h,

1 { ft(i) ̸= ft+h(i)} is an indicator for whether the national firm (lbdfid) of the worker’s primary employer
at quarter t + h is different than t. Nonemployed workers are included as having different firm identifiers.
Standard errors are two-way clustered by CBSA and quarter. The series "separations (cumulated)" is the
sum of coefficients from Figure 1a for h ≥ 0. Note that, because the separation indicators Sepi,t+h include
quality filters that may lead them to have rates lower than the observed firm-switching probability. This
can arise from mergers and acquisitions, where the lbdfid changes without a meaningful job change for
the worker.
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Figure A.2: Effects of market job destruction shock on earnings of job losers vs. job stayers

(a) Job losers (b) Job stayers

Notes: This figure shows our baseline estimates of how job destruction shocks affect the earnings of job
losers (panel a) and job stayers (panel b). The job loser estimates are the same as in Figure 3. The job stayer
estimates are obtained through the same specification: for a worker i who at the start of quarter t holds a
job in local labor market (MSA-two digit NAICS pair) m at firm f , the graphs show estimates of β(h) (along
with 95% confidence intervals) from the worker-by-quarter level 2SLS regression given by

yi,t+h = α(h) + β(h) ŝ− f ,mt + Γ(h)
1 XM

mt + δm + ϵh
imt

where ŝ− f ,mt is the predicted value from the first-stage regression

smt = α f s + β f ssIV
− f ,mt + Λ1XM

mt + δm + ξimt

The sample is the job stayer sample described in 4.1: workers who do not separate from their job at quarter
t. The endogenous variable is smt, the local labor market-level job destruction rate. The exogenous variable
is sIV

− f ,mt which, as defined in (6), is a shift-share instrument constructed from the job destruction rates of
national firms, leaving out the job destruction of these firms in m as well as the job destruction of worker
i’s previous firm f . The dependent variable yi,t+h is the worker’s average earnings in the adjacent quarters
t + h − 1 and t + h, scaled by average quarterly earnings over t − 12 to t − 1. The vector XM

mt consists of
the same market-level controls as in Figure 3. The regressions attach equal weight to each job loser/stayer.
Standard errors are double clustered by quarter of job loss t and by CBSA.
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Figure A.3: Changes in firm characteristics following job destruction shock: job losers vs. job
stayers

(a) Firm Wage Premium (b) Industry Rank of Revenue Productivity

Notes: This figures shows estimates of the equilibrium effects of job destruction on the firm characteristics
for the sample of job losers and matched control group. Both figures plot coefficients use the baseline
specification described in Figure 3. Panel A.3a plots estimates for the difference in the firm-wage premia
between job losers and the matched control group of job stayers. We replace yi,t+h in (7) with Ψt

f (i),t+h −

Ψt
f (i), which is the difference between wage premia of the worker’s firm, f (i), h quarters after the job loss

event and the average wage premia of the firm between the quarter t − 12 to t − 1. Firm wage premia
are measured using the largest connected set of employer-workers in the five year leading up to t. Panel
A.3b presents estimates for the outcome Rank(Yf /N f ) f (i),t+h − Rank(Yf /N f )i, which the difference in the
within-industry rank of the employer revenue productivity (ratio of revenue to employment count), relative
to the three years before the job loss event. Both figures show the difference in coefficients between job losers
and job stayer, β̂ JL − β̂ JS. The regressions attach equal weight to each job loser/stayer. Estimates are scaled
to a 1 pp change in the local job destruction rate. Standard errors are double clustered by quarter of job loss
t and by CBSA.
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Figure A.4: Changes in firm characteristics following job destruction shock: average worker

(a) Firm Wage Premium (b) Industry Rank of Revenue Productivity

Notes: This figures shows estimates of the equilibrium effects of job destruction on the firm characteristics
for the random sample of workers that satisfy our baseline restrictions. Both figures plot coefficients use
the baseline specification described in Figure 3, and details on the outcome construction are given in Figure
A.3. Both figures show the coefficients for the spillover effect among the random sample of worker that
satisfy our baseline restrictions. The regressions attach equal weight to each worker. Estimates are scaled
to a 1 pp change in the local job destruction rate. Standard errors are double clustered by quarter of job loss
t and by CBSA.

Figure A.5: Changes in local labor market following job destruction shock

(a) Change Industry (NAICS 2) (b) Change CBSA

Notes: This figure shows estimates of the equilibrium effects of job destruction on the probability that
workers change local labor markets. Both figures plot coefficients use the baseline specification described
in Figure 3. Figure A.5a plots the differences in the job stayer and job loser propensity to change the industry
of employment, which we define by an indicator 1 {Ind}i,t+h for whether the worker’s two-digit NAICS
industry at t + h is different from that of their primary employer at date t (one year mean: 0.29). Figure
A.5b plots the differences in the job stayer and job loser propensity to move regions, which we define by an
indicator 1 {CBSA}i,t+h for whether the worker’s CBSA at t + h is different than the one at date t (one year
mean: 0.10). The regressions attach equal weight to each worker. Estimates are scaled to a 1 pp change in
the local job destruction rate. Standard errors are double clustered by quarter of job loss t and by CBSA.
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Figure A.6: Heterogeneity in the spillover effects on job loss by stock of nonemployed

This figure plots the heterogeneity in job destruction spillovers by the stock of non-employed workers. We
use the job flows to construct a series of recently-nonemployed workers described in Section C.6, NEm,t.
We then estimate the following extension of the baseline specification for the sample of job losers:

NPV

(
24

∑
h=0

Earni,t+h/Earni

)
=

5

∑
k=1

Qk(NEm,t)×
[

β(k)s−i,m,t + ϕm + Γ(k)
1 XW

i,t + Γ(k)
2 XM

−i,m,t

]
+ ϵi,t

where Qk(NEm,t) is an indicator for whether the labor market is in the k-th quintile of non-employed stock
in our sample. Following our baseline specification, we similarly instrument the local job destruction with

the national firm job destruction rate for each quintile. The figure plots β(k)× NEk (y-axis) against NEk,

where NEk is the average stock of non-employed in each quintile.
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Figure A.7: Worker distribution across productivity states.
Notes: This figure shows the distribution of employment across productivity states. v(x)dF(x) refers to the
distribution of new jobs (the product of vacancy effort and the exogenous firm distribution). gx(y) is the
marginal distribution of job productivity. gy(x) is the marginal distribution of bargaining outside options.
The first value of each series corresponds to the unemployment state.
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Figure A.8: Effects of market job destruction shock on earnings and employment outcomes of
workers, split by job destruction rate of initial job

Notes: This figure displays estimates of the coefficient β j from the following regression

yi,t =
5

∑
j=1

(
αj + β j × s− f ,mt + ΓjXW

it + ΨjXM
mt + λkt

)
· Q(j)

f (i,t) + Φ f + ϵit

where s− f ,m,t is the local job destruction rate excluding the worker’s own firm, Q(i)
f (i,t) is the quintile of the

worker’s national job destruction rate, XM
it and XW

it are the market- and worker-level controls used in the
baseline specification and ϕ f denotes firm fixed effects. Coefficients are plotted against the average job
destruction rate of the worker’s employer in each quintile. The sample is restricted to workers who are
employed at national firms that satisfy our baseline restrictions. Coefficients for the cumulative six-year
earning ratio (green) and employment (purple) are plotted separately. Standard errors are double-clustered
by CBSA and quarter.
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Figure A.9: Additional Transition Dynamics: Negative Aggegate Productivity Shock

(a) Aggregate shock (µx(t)) (b) Market tightness

Notes: This figure plots additional impulse functions for the primary transition dynamics exercise. See
Section 7.2 for details.

Figure A.10: Changes in the distribution between no policy and steady state τ0.

Notes: This figure plots the differences in in the distribution in marginal job productivity (left) and outside
(right) under the calibration described in Section 6.3. Differences are based on the distribution mass under
the steady state subsidy, relative to the no-policy case. Section E.8 provides the details of this exercise.
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Tables

Table A1: Employment Growth Decomposition of Establishments

(1) (2) (3) (4) (5)
Variable Variance Firm (%) Labor market Covariance Residuals

Job Destruction Rate 0.0009232 31.96 11.12 -10.40 67.27
Job Creation Rate 0.001044 33.7 9.04 -13.99 67.15
Net Job Creation Rate 0.003897 30.64 9.04 -7.92 69.28
Job Destruction Rate (Demeaned) 0.0007199 27.28 8.74 7.15 71.12

Notes: This table presents results from a variance decomposition of annual employment changes among
establishments owned by the sample of national firms (FN). For each establishment-level variable y f ,m,t,
we estimate:

y f ,m,t = ψ f t + ϕmt + ϵ f ,m,t

where ψ f t represent firm-quarter fixed effects, ϕm,t are market-quarter fixed effects, and ϵ f ,m,t is the residual
term. Column (1) reports the variance of the outcome variable. Columns (2) and (3) report the fraction of
this variance explained by ψ f t and ϕmt, respectively. Column (4) reports the covariance between ψ f t and
ϕmt, normalized by the variance. Column (5) is the residual variance unexplained by columns (2) to (4). "Job
Destruction Rate" is s f ,m,t as defined in (4); "Job Creation Rate" is the sum of positive employment growth
for the establishment defined in (33); "Net Job Creation Rate" is the difference between the job creation rate
and the job destruction rate; the "Job Destruction Rate (Demeaned)" is s f ,m,t − s f ,m, where s f ,m is the average
establishment job destruction across all quarters in the sample.
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Table A2: Summary Statistics

Sample: Job Loser National Sample Baseline restrictions

Worker

Bachelor’s degree .2994 .309 .3437
Born in U.S. .7613 .8102 .8129
Non-white .2381 .2344 .1911
Male .5947 .5335 .5268
Three-year Average earnings 13670 14440 15390

(12550) (13890) (13780)
Three-year Average employment .9177 .9161 .9508
Age

25–29 .1729 .1905 .1214
30–34 .1933 .1695 .1606
35–39 .1793 .151 .1726
40–44 .1698 .1488 .185
45–49 .1544 .1519 .1874
50–54 .1304 .1883 .1729

Job

Recent CBSA switch? .0984 .1102 .06851
Recent industry switch? .2928 .2935 .1597

(.3663)
Separate within 1 year 1 .3117 .1381
Tenure

1–3 years .5023 .4719 .281
10+ years .07571 .09223 .1815
3–6 years .2808 .2761 .2992
6–10 years .1412 .1598 .2382

Missing Revenue data .4978 .3786 .4377
Counts

CBSA 450 450 450
Firms 572000 23500 939000
Markets (Naics2-CBSA) 3900 4400 6300
Worker-quarter observations 6525000 9972000 23480000
Workers of parent firm 6077000 8630000 3245000
Market-quarter observations 115000 169000 315000
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Table A3: Impact of job destruction fluctuations on the cyclicality of job loss effects

(1) (2) (3) (4) (5) (6)
Actual CF Actual CF Actual CF

Job destruction rate 0.582∗∗∗ 0.341∗∗∗

(0.0410) (0.0445)

GDP growth -0.370∗∗∗ -0.277∗∗∗

(0.0294) (0.0269)

Change in unemployment rate 0.0172∗∗∗ 0.0110∗∗∗

(0.00110) (0.000837)
N 60 60 60 60 60 60
Adjusted R2 0.685 0.415 0.512 0.513 0.498 0.358
JD smoothing effect 0.414 0.253 0.362

Notes: This table shows estimates of how much the countercyclicality of the cost of job loss can be accounted
for by fluctuations in job destruction, based off our causal spillover effect estimates (Table 1). Each column
shows an estimate of γ(x) from the bivariate regression

Loss(x)
it = α(x) + γ(x)cycle(x)

t + ϵt

where x ∈ {Actual, Smooth} and cyclet is some measure of the business cycle. Loss(Actual), the dependent
variables in columns (1), (3), and (5), is the quarterly average of the 24-quarter NPV of job loss among all
workers in our job loser sample described in 4.1. Loss(Smooth), the dependent variable in columns (2), (4), and
(6), is calculated according to (12) and equals the value of this variable based off a counterfactual in which
local market-level job destruction rates are set to their sample period means. See Section 5.1 for further
details. The variable cyclet is set to the national job destruction rate in columns (1)-(2); the four-quarter
change in real GDP in columns (3)-(4); and the four-quarter change in the unemployment rate in columns
(5)-(6). The bottom row (JD smoothing effect) shows the ratio of estimates, γ(Smooth)/γ(Actual) shows the
proportional reduction in the countercyclicality of job loss effects under the smooth job destruction series.
Standard errors are Newey-West using a lag of 24 quarters.
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Table A4: Selection in Worker Characteristics among Job Losers

Outcome Mean Instrument, sIV
−i,m,t Local JD, s−i,m,t

(1) Three-year average earnings 1.29e+04 -33.7 91.5**
(85.3) (35.6)

(2) Three-year average employment 0.918 -0.00177 0.002**
(0.00137) (0.000878)

(3) Age 38.7 -0.0233 -0.0135**
(0.0183) (0.00688)

(4) Born in U.S. 0.761 -0.000246 -0.000269
(0.00121) (0.000461)

(5) Non-White 0.238 -0.000282 -0.000776*
(0.00116) (0.000458)

(6) Tenure (Quarters) at Job Start 16.3 -0.132** 0.0589**
(0.0673) (0.0278)

(7) AKM FE of last employer 0.273 -0.00759* 0.00529**
(0.00426) (0.0016)

(8) Firm’s Local Employment Share 0.00997 -8.12e-05 0.000461**
(0.0005) (0.000195)

(9) Log(Firm Employment) 4.63 -0.028* 0.0287**
(0.0168) (0.00659)

(10) Leave LEHD States 0.11 0.000323 0.000638**
(0.000433) (0.000218)

(11) Job Separation Propensity 0.29 0.00194 -0.00364**
(0.00246) (0.00113)

Notes: This table tests for selection in the sample of job losers by estimating whether the market-level job
destruction instrument predicts worker characteristics measured before event date t:

yi = γsIV
−i,m,t + ϕm + ΓXM

−i,m,t + ϵi,t+h (26)

where XM
−i.m,t are the set of worker-firm-adjusted market-level controls and ϕm are labor market fixed

effects. Column (3) presents estimates γ̂ among the primary sample of job losers for various worker-level
outcomes. They are as follows. Row 1 is the Earni,t base earnings in the three years before the shock
event; Row 2 is the employment rate of the worker was employed during the pre-period; Row 3 is the age
as measured from demographic information provided in the LEHD; Row 4 is an indicator for whether
the worker was born in the United States; Row 5 is an indicator for whether the worker is recorded
as non-white based on Census records; Row 6 is the number of quarters the worker has spent at their
primary job as of date t; Row 7 is the firm wage premia of their primary employer, constructed using AKM
decomposition; Row 8 is the firm’s local employment share among primary jobs; Row 9 is the log of local
firm employment; Row 10 is an indicator for whether the worker leaves the sample of LEHD states; Row
11 is the job separation propensity used in the matching procedure. In column (4), we present estimates for
the OLS variant of (26), replacing sIV

−i,m,t s−i,m,t.

Significance: * (p < 0.10); ** (p < 0.05). Standard errors are clustered by CBSA and observation worker.
Coefficients are scaled to reflect a 1 percentage point change in the job destruction rate.
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B Theory

B.1 Model extension to generate identification conditions

In this section, we derive the conditions under which our research design identifies the spillover
effects from job destruction, β(h) in (7). For simplicity, we suppress time-subscripts and define the
data-generating process at the establishment level, aggregated from worker-level outcomes. We
also assume that each region contains one single industry, which gives a set of weaker conditions
for identification to be satsified. Without loss of generality, we use i to significant these estab-
lishments, which are specific market (m) and firm ( f ) specific combination. We use m(i) and f (i)
throughout to refer to the market and firm of the establishment, respectively. i = m(i)× f (i).

Data-generating process. The underlying data-generating process for the separation propensity
of establishments i, which we refer to as the job destruction rate, is given by:

si = Γ′
sxi + α(i)pi + α( f )q f (i) + α(m)rm(i) + ηi

where x =
{

xM
i , xi

W , ϕm
}

is the baseline set of observables and the establishment-specific error
term ηi is mean-zero and indepedent. The separation propensity is a function of unobserved pro-
ductivity shocks that can occur at the establishment-, firm-, and market- level, where αi, α f , αm ∈ R

describe the sensitivity of the separation propensity to these shocks, respectively. Like ηi, we as-
sume that pi is independent across establishments. The firm-level shocks take the form:

q f = u f + a′f z

where u f is idiosyncratic component of the firm shock that is independent across firms, z is a Z × 1
vector of common factors, and a f is a Z × 1 vector of firm-specific loadings on these factors.60 The
market-level shocks are similarly given by:

rm = vm + b′mz

where vm is the idiosyncratic component of the market shock that is independent across markets,
bm is a Z× 1 is the loading of market m on the common factors. Unconditionally, we allow for firms
and markets to have correlated shocks through loading on the same factors. The data-generating
process for worker outcomes is given by:

yi = βs(M)
m(i) + Γ′

yxi + γ(p)pi + γ( f )q f (i) + γ(m)rm(i) + ϵi,

where s(M)
m(i) is the market-level job destruction rate (smt in the main text), and β captures the

spillover effects of job destruction. Unobserved productivity shocks
{

pi, q f (i), rm(i)

}
can impact

60One can interpret these common factor as aggregate shocks zt that firms and markets may differential load onto.
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worker outcomes in addition to their separation propensity for each establishment.

Connection to Section 2. The data-generating process described above can be seen as an exten-
sion to the qualitative model presented in Section 2 in the following way. Fist, we assume that
there M segmented labor markets, which may differ in terms of their structural parameters (e.g.,
ξv). Second, we assume that there are multiple firms, each of which has an exogenous quantity
of existing jobs across labor markets and can post jobs of heterogenous productivity. Weighting
each ‘job’ from Section 2 by N f m lets us recover the establishment-level data-generating process
described above. Finally, we assume that at the beginning of the period, all jobs are hit with a pro-
ductivity shock, with variation that loads on common factors z and has firm- and market-specific
idiosyncratic components.

Matrix form It is convenient to work with the vector representation of the data generating pro-
cess. Let s denote the I × 1 vector of establishment separation propensities and similarly define
s(M) as the M × 1 vector of market-level separation propensities, which we refer to as local job
destruction. We let O be the I × F matrix tracking establishment ownership, where Oi f = 1 if
establishment i is owned by firm f and 0 otherwise. Similarly define L to be the I × M matrix of
establishment locations. We re-express the data-generating process as:

s = Γ′
sX + α(i)p + α( f )Oq + α(m)Lr + η (27)

y = βs(M) + Γ′
yX + γ(p)p + γ( f )Oq + γ(m)Lr + ϵ (28)

q = u + A′z

r = v + B′z

In what follows, we use Ω to denote covariance matrix of the random variables, e.g. Ωz = E[zz′].

National firm shocks. Our instrument is constructed from observed job destruction rates s. Let
n be the I × 1 vector of establishment employment counts. We let N(F)

f be the total employment of
firm f across establishments, so that N(F) = O′n. We similarly define market size N(M) = L′n.61

We define the market shares of each establishment as ΛM, where ΛM
im = ni

NM
m(i)

. We similarly define

ΛF to be the matrix containing the share of firm employment at each establishment, i.e. ΛF
i f =

ni
NF

f (i)
.

Recall that the national firm job destruction rate, leaving out market m, is s f ,−m = ∑i: f (i)= f ,i ̸=i′
ni

NM
m(i)−Ni′

si

where i′ is the establishment in market m owned by firm f . Denote the leave-out aggregation of
establishment outcomes to the firm level as Λ̃F:

Λ̃F = DF
−e

(
OΛF′ − DF

e

)
(29)

61These employment counts are measured in the period before job destruction is realized.
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where Id is the I × I identity matrix, DF
e is the diagonal of employment shares within firms, De,ii =

ni
NF

f (i)
, and DF

−e is the diagonal matrix of denominator corrections for the firm-level aggregation,

accounting for single-market firms:

DF
−e,ii =


1 if ni = NF

f (i)
NF

f (i)

NF
f (i)−Ni

otherwise

Note that under this form, firms with only a single establishment would have a leave-out firm
shock of 0. The vector of firm-level shocks, δ as:

δ := Λ̃Fs (30)

Due to the leave-out correction, δ is of length I.

Leave-out correction for market spillovers In order to isolate the spillover effects of job destruc-
tion from direct effects that firm shocks may have on worker outcomes, we also perform a leave-
out correction for all market-level shocks. We define the leave-out aggregation of establishment
outcomes to the market level as Λ̃M:

Λ̃M = DM
−e

(
LΛM′ − DM

e

)
where DF

e is the diagonal of market shares, Dm,ii =
Ni

NM
m(i)

, and DM
−e is defined similarly as DF

−e. We

denote the leave out correct market-variable by a −i subscript, i.e. s(M)
−i = Λ̃Ms.

Control-residualized variables. Given the set of baseline controls X =
{

XM, X
W

, ϕm

}
, we define

the variables residualized against controls as, e.g., y⊥ = y − Γ′
yX.

Identification assumption Under the specified data-generating process, the following assump-
tion is sufficient for the identification of the spillover effects of job destruction:

Assumption A1. Conditional on controls X, then the firm- and market-loadings on aggregate shocks are
mutually uncorrelated: E[(OA + LB)E[z⊥z⊥′](OA + LB)′] = D, where D is a diagonal matrix.

Identification

Proposition B.1. (Identification.) Let {λkt} be the set of fixed effects for industry-by-quarter pairs, {ϕm}
market-level fixed effects, and Xmt be the set of time-varying baseline controls. Under Assumption A1, then:

(i) the firm-level job destruction shocks are conditionally quasi-random with respect to the set of fixed
effects and controls: E

[
s f ,−m,t| {ϕm} , {λkt}Xmt

]
= µc f ,t where c f ,t are indicators for the industry-by-

quarter cluster of firm shock (ii) with regularity conditions (B1 and B2 of Borusyak et al. 2022), the estima-
tor:
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β̂ =
Cov(y⊥, Λ̃Mδ⊥)

Cov(Λ̃Ms⊥, Λ̃Mδ⊥)

consistently identifies β, β̂
p−→ β.

To prove Proposition B.1, we make use of Lemma 2.

Lemma 2. For I − length vector x, define the double-leave-out correction as T(x) = Λ̃MΛ̃Fx, where

T(x)i = ∑
j: m(i)=m(j),

f (i) ̸= f (j)

ω̃M
k ∑

k: m(j) ̸=m(k),
f (j)= f (k)

ω̃F
k xk,

where ω̃·
· correspond to the appropriate leave-out corrected employment share. Then the following hold:

1. Cov[p, T(p)] = 0

2. Cov[Ou, T(Ou)] = 0

3. Cov[Lv, T(Lv)] = 0

Proof. We use the mean-0 construction of the p, u, v to write:

Cov[x, T(x)] = E[x′T(x)] = E

xi ∑
j: m(i)=m(j),

f (i) ̸= f (j)

ω̃M
k ∑

k: m(j) ̸=m(k),
f (j)= f (k)

ω̃F
k xk


= ∑

j: m(i)=m(j),
f (i) ̸= f (j)

ω̃M
k ∑

k: m(j) ̸=m(k),
f (j)= f (k)

ω̃F
k E [xixk] (31)

1. E[pi pk] ̸= 0 if and only if i = k. However, inspecting the summation terms (31), we see the
at for all i, m(i) = m(j) ̸= m(k). As i and k are equal if they are the identical firm-market
pairing, then E[pi pk] = 0 for all k in the summation (31). As a result, Cov[p, T(p)] = 0.

2. Similarly, E[(Ou)i, (Ou)k] ̸= 0 if and only if f (i) = f (k). But f (i) ̸= f (j) = f (k) for
all i, which implies that E[(Ou)i, (Ou)k] = 0 for all k in the summation (31). As a result,
Cov[Ou, T(Ou)] = 0.

3. E[(Lv)i, (Lv)k] ̸= 0 if and only if m(i) = m(k). But m(i) = m(j) ̸= m(k) for all i, which
implies that E[(Lv)i, (Lv)k] = 0 for all k in (31). As a result, Cov[Lv, T(Lv)] = 0.

Proof. Let ̂̃ΛMs⊥ = ψ̂Λ̃Mδ⊥ be the predicted values from the first stage (32). Consider the struc-
tural equation (28), residualized against observable X:

y⊥ = βΛ̃Ms⊥ + γ(p)p⊥ + γ( f )Oq⊥ + γ(m)Lr⊥ + ϵ⊥
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Expanding the covariance of the worker outcome with the instrument:

Cov(y⊥, Λ̃Mδ⊥) = βCov(Λ̃Ms⊥, Λ̃Mδ⊥) + γ(p)Cov(p⊥, Λ̃Mδ⊥) + γ( f )Cov(Oq⊥, Λ̃Mδ⊥)

+ γ(m)Cov(Lr⊥, Λ̃Mδ⊥) + Cov(ϵ⊥, Λ̃Mδ⊥)

We consider each term:

A: Cov(Λ̃Ms⊥, Λ̃Mδ⊥) is recovered from the first stage equation (32).

B: Cov(ϵ⊥, Λ̃Mδ⊥) = 0 by the fact that ϵi are independent.

C: Consider Cov(Λ̃M p⊥, Λ̃Mδ⊥). Substituting for δ:

Cov(p⊥, Λ̃Mδ⊥) = Cov
[

p⊥, Λ̃MΛ̃ f s⊥
]

= Cov
[

p⊥, Λ̃MΛ̃F
(

α(i)p⊥ + α( f )Oq⊥ + α(m)Lr⊥ + η⊥
)]

= α(i)Cov
[

p⊥, Λ̃MΛ̃F p⊥
]

= 0

where in the first line we use the definition of the firm shocks (30), we use the specified data-
generating process for s in (27), and the independence of pi in the third line. The final line
uses the Lemma 2 for the leave-out correction.

D: Next, consider unobserved firm productivity:

Cov(Oq⊥, Λ̃Mδ⊥) = Cov
(

Oq⊥, Λ̃MΛ̃Fs⊥
)

= Cov
(

Oq⊥, Λ̃MΛ̃F
(

α(i)p⊥ + α( f )Oq⊥ + α(m)Lr⊥ + η⊥
))

= α( f )Cov
(

Oq⊥, Λ̃MΛ̃FOq⊥
)
+ α(m)Cov

(
Oq⊥, Λ̃MΛ̃FLr⊥

)
= Cov

[
OAz⊥, Λ̃MΛ̃F

((
α( f )OA + α(m)LB

)
z⊥
)]

The first four lines proceed as before, using the independence of q across firms. We then use
Lemma 2 to show that Cov

(
Oq⊥, Λ̃MΛ̃FOq⊥

)
= 0.

E: Consider Cov(Lr⊥, Λ̃Mδ⊥). The expansion proceeds similarly to that of Cov(Oq⊥, Λ̃Mδ⊥):

Cov(Lr⊥, Λ̃Mδ⊥) = Cov
[

Lr⊥, Λ̃MΛ̃F
(

α(i)p⊥ + α( f )Oq⊥ + α(m)Lr⊥ + η⊥
)]

= Cov
[

LBz⊥, Λ̃MΛ̃F
((

α( f )OA + α(m)LB
)

z⊥
)]

where the last line uses Lemma (2).
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Combining these terms,

Cov(Λ̃My⊥, Λ̃Mδ⊥) = βCov(Λ̃Ms⊥, Λ̃Mδ⊥)

+ Cov
[(

γ( f )OA + γ(m)LB
)

z⊥, Λ̃MΛ̃F
((

α( f )OA + α(m)LB
)

z⊥
)]

Under Assumption A1, the second term is zero, and so

β̂ =
Cov(y⊥, Λ̃Mδ⊥)

Cov(Λ̃Ms⊥, Λ̃Mδ⊥)
= β

B.1.1 Connection to validation exercise

We can use this framework to understand the implications for our validation exercises for the
assumptions under which we identify β.

Sorting among national firm shocks . Recall that we estimate the following relationship be-
tween national job destruction rates:

δ
(R)
m = γδ

(1)
m + Γ′

RX + ϵ(R),

where δ
(R)
m is the national firm shock of the R-th largest employer in market m, projected onto the

firm shock of the largest national employer and the set of baseline controls. Define PR to be the
E× L matrix with values equal to one if the establishment (row) contains the R-th largest employer
in the market (column) and zero otherwise. Then our rank-test can be expressed as:

P′
Rδ = γ(R)P′

1δ + ϵ(R)

Using the definition of δ, γ =
Cov(P′

Rδ⊥,P′
1δ⊥)

Cov(P′
1δ⊥,P′

Rδ⊥)
, where is numerator can be decomposed as:

Cov(P′
Rδ⊥, P′

1δ⊥) = Cov
[

P′
RΛ̃Fs⊥, P′

1Λ̃F′s⊥′
]

= Cov
[

P′
RΛ̃F

(
α( f )Oq⊥ + α(m)Lr⊥

)
, P′

1Λ̃F′
(

α( f )Oq⊥ + α(m)Lr⊥
)]

= Cov
[

P′
RΛ̃F

(
α( f )Oq⊥ + α(m)Lr⊥

)
, P′

1Λ̃F′
(

α( f )Oq⊥ + α(m)Lr⊥
)]

= Cov
[

P′
RΛ̃F

(
α( f )OA + α(m)LB

)
z⊥, P′

1Λ̃F
((

α( f )OA + α(m)LB
)

z⊥
)]

+ Cov
[

P′
RΛ̃Fα(m)Lv, P′

1Λ̃Fα(m)Lv
]

where, as above, we use the fact that δ(R) and δ(1) have no row-wise overlap. Note that in addition
to the covariance in common loading factors in the first line, we have an additional line that
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captures “market overlap” between the firms that are effectively captured as measurement error
in the idiosyncratic firm shock (since we cannot observe firm-level productivity). We can rewrite
this first term as ∑m ω̃F

fR,mω̃F
f1,mσ2

v,m.
If we aggregate across all national firms (FN), then we can drop the permutation matrices and

express the covariance as:

Cov
[(

α( f )OA + α(m)LB
)

z⊥, Λ̃F
((

α( f )OA + α(m)LB
)

z⊥
)
FN

]
+ Cov

[
α(m) (Lv)FN , Λ̃Fα(m)Lv

]
where the subscript FN denotes the set of firms with at least two establishments. Interpreting the
validation exercise, we found that γ̂R ≈ 0 for (effectively) all R > 2.

National vs. local firms . Next, we consider the relationship between the national firm shocks
and the local firm shocks. We consider the following variant of the first stage relationship:

sL = ψ · Λ̃Mδ + Γ′
f sΛ̃

MX + ν (32)

for the set of IL that have single establishments. Recall that, under (29), δ f = 0 for these sets of
firms and so Λ̃Mδ = ΛMδ in (32). Note that, after residualizing against controls, ψ = Cov(s⊥L , δ⊥)/Cov(s⊥L , s⊥L ).
Decomposing the numerator and using the fact that the set of firms in s and δ are dijoint:

Cov(s⊥L , δ⊥) = Cov
(

s⊥L , Λ̃Fs⊥
)

= Cov
((

α(i)p⊥ + α( f )Oq⊥ + α(m)Lr⊥ + η⊥
)

, Λ̃F
(

α(i)p⊥ + α( f )Oq⊥ + α(m)Lr⊥ + η⊥
))

= Cov
((

α( f )OAz⊥ + α(m)LBz
)

L
, Λ̃F

(
α( f )OAz⊥ + α(m)LBz

))

Because the market-level instrument and the left-hand-side feature a disjoint set of firms, only the
common loadings between the two are relevant. The validation results suggest ψ̂ ≈ 0 for these
firms, which suggest that the exogeneity condition is plausible.
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C Data and Measurement

C.1 List of LEHD states

The states included in our sample are Alabama, Arizona, California, Connecticut, Delaware, Mas-
sachusetts, Maine, Maryland, Missouri, North Dakota, New Jersey, New Mexico, Nevada, New
York, Ohio, Oklahoma, Pennsylvania, South Dakota, Tennessee, Texas, Utah, Virginia, Washing-
ton, and Wisconsin.

C.2 Measuring job flows

C.2.1 Firm and job definitions

Jobs We define a job as a unique relationship between a worker identifier (‘pik‘) and firm iden-
tifiers in the LEHD (‘SEIN‘) derived from tax filing. In particular, we use the longitudinal ‘fid‘
identifier available in the most recent snapshot of the LEHD, which corrects for spurious job tran-
sitions using observed worker flows between establishments. We restrict our sample to worker-
year observations for which job identifiers are available.62

Earnings We deflate earnings to 2015 USD using the BLS Consumer Price Index (CPI-U) and
top-code quarterly earnings to $ 150,000 in earnings. We define the primary job of the firm as of
period t as the one with the greatest earnings in period t.63 We define the base quarterly earnings
for date t as the ratio of total quarterly earnings between t − 1 to t − 12 divided by the number of
quarter for the count of quarters for which earnings is positive over the same period.64

Following Autor Dorn Hanson Song (2014), We identify workers as being "attached to the labor
force’ if their earnings in the past year is greater than workers 1600 hours (= 40 weeks at 40 hours
per week) at the 2007 federal minimum wage ($5.85)

Worker and Job characteristics. We assign workers to industries and CBSAs based on the re-
spective modal values from the imputed establishments in the LEHD Jobs file that are linked to
the employer characteristics file. We use demographic characteristics (Sex, birth year, and race)
using person-level files that are derived from the Decennial Census and SSA Numident files.

Linking parent firm identifiers We develop a crosswalk between firm identifiers in the LEHD
(‘SEIN‘) and those in the LBD to construct employment for national firms, which makes adjust-
ments to the existing linkages based on the firm ‘alpha‘ available in the LEHD. We use this cross-

62The ‘fid‘ identifiers are found in the Job History Files (JHF). In some cases, data from the JHF may start later
than the full earnings history available at the worker level, which typically reflects data quality issues in the employer
characteristic files for the first few years in which a state is included in the LEHD.

63If the worker is not employed in period t − 1, we define the primary job using quarter t earnings.
64We have experimented with different extending the horizon over which we measure base earnings or restricting

the measure to quarters in which the worker is observed to employed at both the beginning and end of the quarters.
The results are unaffected by these modifications,

75



walk to link individuals to parent firm identifiers from the LBD (‘lbdfid‘). This is the notion of
firm used in the main text.

To construct firm-level job flows, we require that the linked LBDFID firm must (i) have at least
one establishment in the same or neighboring state at the matched SEIN. We exclude parent firms
for which establishments are identified to be patrolling processing services (NAICS code: 541212)
or temp agencies (561311).

C.2.2 Job destruction measurement

We describe our construction of the local job destruction measure in greater detail. For a given
worker i, define the indicator for (permanent) separations Sit = 1 if the worker is last observed
to have earnings at their primary employer at quarter t. We measure Sit in two steps. First, we
use a longitudinal notion of the job that corrects for spurious transition in the employment iden-
tifiers at the SEIN-level by using the Census-provided fid variable to track jobs. This identifier
links employment spells across SEIN in cases where the transition between firms is deemed to be
spurious according to the LEHD Successor-Predecessor (SPF) file. Workers at a given job may
have multiple job spells, which are defined in the LEHD as periods of employment at the firm
separated by at least one quarter of nonemployment. In the second step, we collapse multiple job
spells into a single job history and define Sit = 1 to be the last quarter of the SEIN-based job history
and their primary employer lbdfid identifiers differs between t and t + 1 if employed. This final
adjustment serves as a precaution for job transitions that may be spurious but are missed by stan-
dard adjustments using only identifiers in the LEHD. We similarly define and indicator for (new)
hiring Hit = 1 if the worker is first observed to have positive earnings at their quarter-t employed
at either t or t − 1, and their primary employed lbdfid differs between t and t − 1.

We construct quarterly job flows using the following procedure. First, for each quarter q ,
we define the set of workers between the ages of 24 to 64 that satisfy one of the following set of
conditions (i) hold a single at the beginning of the quarter, has at least two quarters of positive
earnings at the current job and at least $3,000 of earnings in the past year; or (ii) holds a single
job by the end of the quarter and is not in the first year for which the worker’s state enters the
LEHD sample.65 These serve as denominator from which we measure job flows.66 We then flag
job separations for workers in quarter q and the next 3 quarters as well hires at q and the previous
3 quarters. For a given establishment j , we define the cumulated job separation rate sc

jq and hiring

65Our age restriction helps avoid labor market flows that reflect short-term positions during schooling (e.g., intern-
ships) and early retirement for which job destruction is unlikely to exert congestion effects among full-time workers.
Similarly, multiple job holders likely reflect part-time work for which our single-worker, single-job framework is less
likely to apply and reflect only 5% of the labor force (Bailey and Spletzer, 2020). We include a minimum earnings
threshold to avoid the inclusion of temporary positions or backpay that does not reflect a stable job that a worker can
attain.

66In practice, constructing flows from only from (i) does not make much difference for the firm-level series This
procedure ensures, however, that quarterly separation and hiring rates are bounded between 0 and 1.
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rate hc
jq as

Sep f ,m,t =
∑i:m(i)=m& f (i)= f ∑3

h=0 Sepi,t+h

N f ,m,t
Hire f ,m,t =

∑i:m(i)=m& f (i)= f ∑3
h=0 Hirei,t+h

N f ,m,t

In other words, we define our baseline measure of separations as the fraction of workers at time
q employed at j that leave the job at some point over the next four quarters. Similarly, we define
the hiring rate as the workers set of workers who find a job at the firm, relative to the number of
workers as of quarter q. Since we only track separations of workers who were employed at the
firm at time t, our measure of separations, Sep f ,m,t is bounded between 0 and 1 by construction.
However, this is not the case Hire f ,m,t as more workers can be hired than were initially employed.

Our baseline measure of job destruction rate is the separation rate net of hiring when the firm
is contracting:

jdrc
sq = max{sc

jq − hc
jq, 0}

where we define the job creation rate symmetrically as jcrc
sq = max{hc

jq − sc
jq, 0}. Note that the

sample restricts flows to worker who hold one job as of quarter t. This is meant to avoid the
counting of part-time job transitions, where the assumption that workers are attached to a single
firm may be less likely to hold.

Our notion of job destruction and job creation rates do not exactly match those using the Davis
and Haltwanger (1992) approximation. We use the average employment in the previous quarter
as the denominator when constructing employment flows as that corresponds more closely to
the shares used in the construction of national job destruction rate (we wouldn’t want to use
employment from periods after the shock, as is done in DFH). In particular, we only count as a
job as being destroyed if there are more worker outflows than replacement hiring for the same
‘type’ of worker (i.e. single job, working age). Our measurement is useful due to the fact that the
firm-level identifiers (lbdfid) are not fully longitudinal.

C.3 Baseline sample: initial restrictions

We describe the baseline restrictions for the samples used to estimate worker spillovers. For a
given quarter t, we first restrict workers to those that meet the following criteria: (i) age is between
25-54 years as of t (prime-age workers); (ii) hold single job at the beginning of t; (iii) Both the CBSA
for the worker’s residence and place of worker have sufficient coverage by our subset of LEHD
states;67 (iv) is not employed in the following industries at t: Agriculture (11) Other Services (81)
, Public Administration and Government (92), Accounting, Tax Preparation, Bookkeeping and
Payroll Services (5412. and Employment Services (5613); (v) Attached to the labor force in the past
year; (vi) state associated with current job entered the LEHD sample at least before t − 12 ; (vii) At
least four quarters of positive earnings at primary employer; (viii) successfully linked to lbdfid

67In particular, we restrict the set of CBSAs to those where at least 80% of 2005 employment is within our sample of
states.
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identifier; and (ix) Firm has at least 50 employees in the worker’s CBSA in the past year; (x) the
worker does not have positive earnings in other states not covered by our sample of LEHD states
between t − 12 and t.

C.4 Baseline sample: mass layoff definition

We define an employer as undergoing a mass displacement event at quarter q if it satisfies one of
the following definitions.

Displacement DvW : Growth rates are based on the employment reported for the SEIN associated
with the firm from the LEHD Employer Characteristics File. The firm is reported to have at
least 50 workers as of q − 4; The ratio of q + 4 employment to q − 4 employment is between
0.01 and 0.7; q − 4 employment is less than 130% of q − 8 employment; q + 8 employment is
less than 90% of q − 4 employment.

Displacement FSS : Growth rates are based on the employment reported for the SEIN associated
with the firm from the LEHD Employer Characteristics File. The firm is reported to have at
least 50 workers as of q − 3; the ratio of q + 1 employment to q − 3 employment is between
0.01 and 0.7.

Displacement LBD : Growth rates are based on annual changes in employment from establish-
ments in the LBD, aggregated to lbdfid-by-CBSA pairs in each year. The firm is reported
to have at least 50 workers as of last March (the date at which employment is measured for
the LBD) and the change in employment of the firm between between last March and next
March is greater than 30%.

The first displacement definition is used by Davis and von Wachter (2011) and the second
definition is used by Flaaen et al. (2019) in studying the earnings effects of job loss. Our imple-
mentation of both these definitions in the LEHD uses SEIN identifiers to establish consistency
with their approach, where information on local employment changes are not used. These two
definitions exclude the possibility of spurious firm exists by requiring that the firm must have
positive employment following the mass layoff event. The third definition uses information on
local employment from the LBD. Because we measure employment growth using longitudinal es-
tablishment identifiers that are then aggregated to the local parent-firm, this definition accounts
for business ownership changes and therefore allows firm exit in the region. Pooling mass layoff
across different even definitions ensures that our results are robust to the adjusts in how displace-
ments events and helps to increase our sample size for detecting local spillover effects.

We defined the set of worker-quarter events that constitute our displacement sample as those
where (a) the worker satisfies the baseline restrictions above, (b) the worker is observed to separate
from the firm at t and (c) the firm’s primary employer at the beginning of quarter t satisfies at least
one of the displacement event definitions.68

68Note that some theoretical ambiguity in the expected direction of the selection bias. If separations by incumbent
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C.5 Baseline sample: matched control group

We construct a comparison group for the sample of displaced worker events using the following
procedure. First, we restrict worker-dates to those that (a) satisfy our baseline restrictions (b) have
primary employers with at least 50 workers in the CBSA in the past year and have local firm
growth rates between -5% to 5% in the current year (c) the primary job of the worker does not
change between q to q + 3. The requirement that the firm not experience large changes in the
growth rate help ensure that we comparing workers who differ in the underlying employment
distress experienced by their primary employer (Flaaen et al., 2019). We allow workers in the
comparison group to leave their primary employer or be included as part of future displacement
events.

We construct our comparison by matching each displaced worker-event to a job stayer in two
steps. First, we match exactly on NAICS3, CBSA, 5-year age bins, sex, 4 tenure bins, and whether
their primary employer is a national firm. Then, for each displaced worker-event, we find the job
stayer with the most similar earnings covariates prior to the displacement quarter. Following past
literature, we use the following covariates the log of each of the past 3 years of annual earnings,
the number of quarters employed in the past 3 years, the log of firm size, and the number of
quarters with positive earnings at the current employer. We use the Mahalabanois distance metric
to greedily create matches without replacement. We follow Abadie and Imbens (2006) in including
the regression-adjusted differences in covariates as a control in our estimates of worker spillovers
using the procedure outlined in Imbens (2015).

C.6 Stock-based measure of displaced workers

We describe how we construct LLM measure of aggregate search effort from displaced workers.
Define the stock of aggregate search intensity for a LLM m at time t as Um,t. Workers are distin-
guished by some group-based index g, and each worker in g contributes ϕg,t of market-congesting
search. Then we can write our measure of search intensity as:

Um,t = ∑
g

ϕg,tug,m,t

where ug,m,t is the count of workers in state g in market m at time t
As in the main sample, we assign each worker’s LLM m(i) based on the CBSA-NAICS2 of their

primary employer at the time of separation. We assign g according to the quarter since the worker

firm-worker matches were bilaterally efficient, then the lower outside option induced by spikes in job destruction
would lead only the least-valuable matches to separate. To the extent that the value of a worker’s current job is cor-
related with the cost of job loss (e.g., if it reflects a worker-specific component of productivity), this would bias our
estimates towards finding more negative earnings effects of job destruction spillovers. On the other hand, suppose that
the separation decision of a firm-worker match is partially based on the probability that, after a separation occurred,
the firm would be able to recall their most productive workers from unemployment (Fujita and Moscarini, 2017). Then,
the decrease in the market-level job-finding rate induced by a spike in job destruction would lead firms to dispropor-
tionately increase the separation rate of relatively productive workers, biasing our baseline estimates towards finding
less negative earnings effects of job destruction spillovers.
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was last employed and let ϕg,t ≥ 0 for all workers who were separate from the job at time t.69 For
simplicity, we set ϕg,t = 0 for workers with more than g quarters of nonemployment. To convert
our flow measures of separation with the survival probability of nonemployment to obtain our
stock measure:

ug,m,t = Sm,t−g × Πg
k=0(1 − P(k)

m,t−k)

where Sm,t−g is the separation rate and P(k)
m,t−k is the probability that a worker separated in market

m who has been out of work for k periods finds a job at time t − k. Our measure for the stock of
workers is:

ũg,m,t = ˆJDRm,t−g × Πg
k=0(1 − P̂(k)

IND(m),t−k)

which makes two adjustments. First, we replace the separation rate with the job destruction rate.
Using net changes in employment to measure labor market search is useful to help correct for
changes in employer churn. This is particularly important as our baseline measure assigns work-
ers based on their origin labor market – the porousness of labor markets means that gross flow
measures would potentially miss replacement hiring from other sectors and bias aggregate search
effort for labor markets with changing workforce compositions. Our second adjustment is to es-
timate to impute the job-finding hazard rate using national measures of job-finding. Using the
local, measure of job-finding rate would lead to issues of reverse causality in the presence of labor
market congestion, as higher levels of job destruction would reduce the job-finding probability of
workers. We therefore use the industry-level job-finding rate amongst workers who have been
non-employed for k quarters.70

D Empirical Results: Details and Extensions

D.1 Details on baseline specification

D.1.1 Formulas for market-level controls

In this section, we provide the explicit formulas for the market-level controls described in the main
text.

We define the establishment-level job creation rate similarly to the job destruction rate:

c f ,m,t = max

∑3
h=0

(
Hire f ,m,t+h − Sep f ,m,t+h

)
N f ,m,t−1

, 0

 . (33)

69We effectively set ϕg,t = 0 for all workers who at their at time-t job.
70We use the LEHD national employment file to omit workers who find employment in other states that we do not

observe in our sample.
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The net job creation rate is the difference between the job creation and the job destruction rate.

nc f ,m,t = c f ,m,t − s f ,m,t.

Due to the filters we impose in tagging job separations and hires, the net job creation rate does not
always correspond exactly to the year-on-year growth rate from establishment-level employment,
N f ,m,t−1
N f ,m,t+3

− 1.
Predicted job creation rate of national firms:

h f ,−m,t = ∑
m′ :r(m′) ̸=r(m)

(
N f ,m′,t−1

∑m′′ ̸=m N f ,m′′,t−1

)
× h f ,m′,t

where h f ,m′,t is the establishment-level job creation rate, which is defined similarly to the job de-
struction rate as the growth rate of firms that are expanding.

D.2 Decomposition of extensive margin spillover

Under the assumption of no intensive margin spillovers – i.e., that conditional on Empi,t+h = 1,
the earnings ratios of laid-off workers are the same in LLMs with different job destruction rates
– the extensive margin effect is the spillover effect on employment at t + h scaled by the average
earnings ratio of workers in our mass layoff sample with positive earnings at t + h.

We then take the sum of these extensive margin effects to arrive at the estimates in column (3).71

Since this sum would equal the overall earnings effects in column (1) if there were no intensive
margin effects, we can interpret the estimates of column (3) as capturing the contribution of the
extensive margin to the overall spillover effects of job destruction.72

71Precisely, if βh is the coefficient estimate from (7) under the dependent variable Empi,t+h, and ratiot+h is the average
earnings ratio of workers in our mass layoff sample, i.e.

ratiot+h = ∑
∀i:Empi,t+h=1

Earni,t+h

Earnit
× 1

∑∀i Empi,t+h

then the extensive margin contribution equals

32

∑
h=0

βh × ratiot+h ×
1

(1 + .05)h

For the matched control specification, we subtract from ratiot+h the similarly-defined average ratio among control
group workers (conditional on the control worker’s given treated worker being employed at t + h).

72There are two caveats to this statement. First, our measure of the extensive margin of employment, Empi,t+h,
equals one if the worker is employed at any time during the quarter t + h, even if she is non-employed for a substantial
overall fraction of the quarter (e.g., two months). The LEHD does not allow us to observe such high-frequency (intra-
quarter) non-employment spells. This will lead us to understate the importance of non-employment effects in our
decomposition of the earnings spillover estimates. Second, the decomposition that we conduct implicitly assumes that,
absent any intensive margin spillover effects, the average complier in our mass layoff sample – i.e, worker who, as
a result of a high value of our job destruction instrument, goes from Empi,t+h = 0 to Empi,t+h = 1 – would have
earned the same labor income during t + h as the average (quarter t) laid-off worker for whom Empj,t+h = 1. But it
is plausible that such compliers would have experienced a greater earnings loss than the average employed worker in
our mass layoff sample, had they been employed; this would be the case, for example, in a setting with random search,
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D.3 Spillover identification

Definition of market-weighted residuals

ϵ
(h)
f t = ∑

∀m

(N f ,m,t−1

Nm,t−1

)
· ϵ

(h)
mt

for ϵmt the average of the worker-level residuals ϵimt for workers in the regression who were laid
off from a job in market m.

Difference between implementation and assumptions for (9) For ease of presentation, the con-
dition presented here only applies under two assumptions: (i) each market m has an equal (effec-
tive) regression weight; and (ii) we do not construct the instrument leaving out the job destruction
activity in the market m itself. Neither of these conditions holds in our setting: (i) as the regressions
are run at the worker-quarter level, more weight is put on markets with more laid-off workers in
the given quarter; and (ii) we leave out job destruction activity in the market (as well as in other
sectors in the market’s CBSA) when constructing the instrument.

D.4 Distressed search and the concentration of JD shocks

Our preferred theory as to why the spillovers effects on job losers (and the unemployed more
generally) are large is that they must engage in a form of intensive search at a time when the job
destruction rate is high. However, it is likely that employed workers may also experience large
spillover effects if they anticipate that their job may be destroyed in the near future as they would
also engage in distressed job.

We consider an alternative design in which, in lieu of conditioning on job loss, we estimate
the heterogeneity in spillovers among workers with different levels of ex-ante propensities to seek
new jobs. We proxy the search intensity of workers using the (leave-out) national job destruction
rate at their own firm, s f (i),−m,t among a random subsample of employed workers at national
firms.73. The national firm job destruction rate provides a measure of worker’s separation risk
that, when leaving out the worker’s own LLM and conditional on market-level controls, is not
endogenous to the characteristics of either the worker or market conditions.

We estimate the following extension of (7):

yi,t =
5

∑
j=1

(
αj + β j × s− f ,mt + ΓW

j XW
it + ΓM

j XM
mt + λjkt

)
· Q(j)

f (i,t) + ψ f + ϕm + ϵit

where Q(j)
f (i,t) denotes the quintile of the national separation rate of the worker’s firm. By including

heterogeneous post-layoff shocks to worker productivity, and endogenous search effort. All else equal, this would lead
us our decomposition to overstate the importance of the extensive margin.

73The job-events we measure pass the same baseline restrictions on working-age, tenure, and LLM coverage as de-
scribed in Section 4.1
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quintile-specific time-by-sector fixed effects (λjkt), the coefficients β j are estimated by comparing
two workers who, at the same point in time, have jobs at firms with the same job destruction
behavior and in the same sectors, but in local markets that are more versus less exposed to sep-
aration shocks from other firms. We control for worker- and local market-level characteristics,
allowing them to vary by Q(j)

f (i,t) to account for the potential selection of different types of workers
into being employed in risky jobs. In addition to the set of controls for the baseline specification,
we also include a fixed effect for the worker’s firm, ψ f , to account for potential sorting of workers
across with varying employment dynamism.

Figure A.8 plots estimates β̂ j against the average firm-level job destruction rate in each quin-
tile, where we set outcome variable to be the net present value of the earning ratio ( Earni,t+h

Earni
, in

green) or cumulated quarterly employment (Empi,t+h, in purple) over a 6-year horizon. Our esti-
mates imply that only workers whose firms as of t = 0 are in the fifth quintile of job destruction
experience significantly negative earnings and employment effects from being in a local market
exposed to job destruction shocks. Among workers in this quintile, workers in local markets with
a 1 pp higher destruction rate experience an earnings NPV loss that is around 0.625 pp (0.15 /
24 × 100 quarters) greater. In contrast, workers in the lowest quintile of job destruction experi-
ence employment and earnings spillover effects that are statistically indistinguishable from zero.
These results are consistent with job search as being a key mechanisms through which spillover
from elevated job loss are transmitted.

D.5 Details on AKM estimation

We follow Card et al (2018) in estimating worker and firm fixed effects. We use the lbdfid defi-
nition of firm when available and use the SEIN when either the lbdfid match does not pass our
quality restrictions or is missing. We winsorize the log of annual earnings of a person-firm combi-
nation at the top and bottom 0.5th percentiles, and then residualize this measure against calendar
year indicators, and a cubic polynomial of age (centered at 40) interacted with sex. We estimate
the firm and worker FE over a rolling six-year window (y − 5 to y) on the largest connected set of
workers and firms:

˜log(earni jy) = Ψi + Ψj + ϵiy

where Ψi indicates the worker fixed effect and Ψj indicates the fixed effect of the firm that employs
the worker in year y.

E Quantitative Model Details and Estimation

This section provides details to the quantitative model and estimation. In Section This section
provides additional details on the estimation and solution to the quantitative model presented in
Section 6.
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E.1 Derivations/Expressions

Notation Let ∂qF(q, ·) = ∂F
∂q (q, ·) generically denote the partial derivative of a function with

respect to some variable q. We use Dd(·) to denotes the Dirac measure at d. Unless otherwise
noted, we use y = (h, x, r) ∈ Y to refer to the idiosyncratic states of workers, where Y :=

[
h, h
]
×

X × X .74 We also define the set of employed worker states for some human capital level h as
YE(h) :=

{
y ∈ Y : xy ̸= b, hy = h

}
Following Bilal (2023), we define the worker distribution with

respect to base measure η(y) := η((h, x, r)) as the product of marginal measures, with mass points
located at states of unemployment and the boundary points of each state:

dη(y) :=
(
dh + Dh + Dh

)
⊗ (dx + Db + Dx + Dx )⊗ (dr + Db + Dx + Dx )

where ⊗ denotes the tensor product of measures,and b is an index denotes the unemployed state
and which we set to b < x and r share the same domain X = {b} ∪ [x, x].75 The index for
unemployment, b, should not be confused with the flow value of unemployment.

Productivity diffusion Denote the infetesimal generator associated with the productivity diffu-
sion process xt in (14) as Mx(y)[·], which encodes the expectations of changes to a function over
the internal [t, t + dt). We define the diffusion generator for some value function V as

Mx(y)[V] = ∂xV(y)µ(x) +
σ2(x)

2
∂xxV(y) (34)

Similarly, define the generator for human capital Mh(y)[·] such that:

Mh(y)[V] =

−ψu(h)∂hV(y), if x = b (unemployed)

ψe(h)∂hV(y), if x ̸= b (employed)

where ψu(h) and ψe(h) are the drift rates of human capital in unemployment and employment
respectively.

E.1.1 Incorporating mutual consent

As job productivity evolves stochastically it is possible that, at a given wage wt(y) negotiated
according to Cahuc et al. (2006), the surplus share of the firm falls below their outside option
of zero. To maintain bilateral efficiency, we therefore extend the bargaining mechanism to allow
for renegotiation under mutual consent. We do so by allowing firms to renegotiate a wage such
that their surplus share is equal to zero. As a result, the worker resets their outside option r
to be equal to the current value of productivity. An implication of this form renegotiation that

74Recall from Section 6.1 that X = [x, x] ∪ {b}.
75Note that the distribution of vacancies does not contain any mass points. We therefore use dHt(·) as the distribution,

which implicitly uses dx as the base measure.

84



the worker’s outside option is never greater than the job productivity. Formally, we define the
diffusion generator for the outside option as in (17).

Importantly, the outside option diffusion is only active if productivity is equal to the outside
option and the diffusion will enter negative firm-surplus space (dx < 0). In this case, the worker’s
outside option moves lock-step with productivity, as guaranteed by the fact that the diffusion is
the same as that (14) including the identical Wiener process, Wx. We therefore define Mr(y)[·] as
the generator of the diffusion corresponding to (17).

E.1.2 Firm/Worker HJB equations

ρWt(y) = w(y) +Mx(y)[Wt] +Mh(y)[Wt]− κWt(y)− δ (Wt(y)− Ut(h)) +
Et [dtWt(y)]

dt
(35)

+ϕ f (θ)
[∫ x

r

(
W((h, x, x′))− W(y)

)
dHt(x′) +

∫ x

x

(
W((h, x′, x))− W(y)

)
dHt(x′)

]
subject to

Wt(y) ≥ Ut(h) (Individual rationality)

where w(y) is the wage defined by (16) and we use the notation y = (h, x, r). The first line includes
state transitions unrelated to job-finding, including time-dependent changes to the worker value
Et[dtWt(y)]

dt . The second line are changes to the value function as a result of contact with new jobs,
with occurs at Poisson rate ϕ f (θ). Jobs of productivity x′ that are between worker’s outside option
and current firm productivity r ≤ x′ < x lead to bargaining, while jobs of productivity x′ ≥ x lead
to the worker quitting and starting the new job.76

The unemployed worker’s HJB equation is similarly:

ρUt(h) = b(h) +Mh(y)[Ut]− (κ + κu)Ut(h) +
Et [dtUt(h)]

dt

+ f (θ)
∫ x

x∗(h)
(W((h, x, b))− Ut(h)) dHt(x)

where unemployed workers are allowed to have a different labor market exit rate and accept offers
from jobs with PDV that is greater than their separation threshold x∗(h).77

76Under the wage mechanism, contact from new jobs of productivity x ≤ r are ignored by the worker.
77By definition, these are the set of jobs that are more valuable than unemployment. Firms of jobs x ≤ x∗(h) cannot

commit to an individually rational wage offer that would be accepted by the worker.
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Similarly, the firm HJB equation is:78

ρJt(y) = p(h, x, z)− w(y) +Mx(y)[Jt] +Mr(y)[Jt] +Mh(y)[Jt]− (κ + δ) Jt(y) +
Et [dt Jt(y)]

dt
(36)

+ ϕ f (θ)
[∫ x

r

(
J(y)− J((h, x, x′))

)
dHt(x′)

]
− ϕ f (θ)(1 − Ht(x))J(h, x, x′)

subject to

Jt(y) ≥ 0 (Individual rationality).

Incumbent firms whose workers are poached get zero-normalized scrap value if their worker sep-
arates in either of the four ways (quit, endogenous layoff, exogenous separation, or retirement).
Workers that bargain up their wages lower the firm’s surplus (second line of 36).79

From (36), we can derive the expected value of firms that post new jobs, JN
t (x):

JN
t (x) =

∫ h

h

∫
x′∈{b}∪[x,x]

∫
x∈X

Jt((h, x, x′))dη((h, x′, r)) (37)

We first show that the value function of a given employment state is not dependent on the
on the outside option of the worker, r ∈ X . For conciseness, we assume that the value functions
reflect is ex post of the decision to remain in the match.

E.1.3 Surplus independence of rent division

In describing the wage-bargaining mechanism (16), we express the production value (V) and sur-
plus (S) of solely in terms of the productivity components of the worker’s state, (h, x). We present
the formal derivation below.

Lemma 3. The production value V(y) = J(y) + W(y) and surplus S(y) = V(y)− U(h) of a worker in
state y := (h, x, r) are independent of the outside option r.

Proof. First, add (35) and (36) and use the definition S(y) = J(y) + W(y)− U(h) to write:

ρV(y) = p(h, x, z) +Mx(y)[V] +Mh(y)[V] +Mr(y)[V]− κV(y)− δ (V(y)− U(h)) +
Et [dtV(y)]

dt
(38)

+ ϕ f (θ)
∫ x

r

(
V((h, x, x′))− V(y)

)
dHt(x′) + ϕ f (θ)

∫ x

x

(
W((h, x′, x))− V(y)

)
dHt(x′)

78In sequential, the firm value of job y is given by:

Jt(y) = Et

[∫ T(yt)

0
e−ρ(s−t)π(ys)ds + Jt+T(yt)(yT(yt))|yt = y

]
,

where the profits π(ys) := p(x(ys), zs) − w(ys) is the flow production net of worker wages and Jt+T(yt)(yT(yt)) is a
potential transfer to the firm at the end of the job’s duration, yT(yt), where T(yt) is the duration of the match conditional
on the worker’s state. Note that the match duration is itself a stochastic variable and reflects the “optimal stopping” of
the job as a result hitting the lower boundary or poaching by other firms. See of state yt. See Stokey (2009) for details.

79Note that Jt(y) = 0 for y ∈ Y − YE.
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Subtracting Ut(h) from both sides and using Mx(y)[U] = 0:

ρS(y) = p(h, x, z)− b(h) +Mx(y)[S] +Mh(y)[S]− (κ + δ)S +
Et [dtS(y)]

dt

Mr(y)[S] + (S(h, x, b)− S(h, r, b))(1 − β) + ϕβ f (θ)
∫ x

r

(
S((h, x, x′))− S((h, x, r))

)
dHt(x′)

+ ϕ f (θ)β
∫ x

x

(
S(h, x′, b)− S(h, x, b)

)
dHt(x′)− f (θ)β

∫ x

x∗(h)
S(h, x, b)dHt(x) (39)

+ (Ψu(h)[U]− Ψe(h)[U]− κuUt(h))

where we substitute (16) in the third line, include Ut(h)− Ut(h) in the integral terms, and use the
fact that S((h, b, b)) = 0.80 We conjecture that the suplus does not depend on the outside option.
Under this assumption, then the second line (39) is zero. Next note that the first line does not
depend directly on the outside option r and the fourth line is only a function of Ut(h). Finally,
under the assumption that the surplus is independence of division rents, then the third line does
not depend on r. As a result, it is confirmed that the right hand side of the surplus is independent
of the outside option r, and we re-express the surplus as:

ρS((h, x)) = p(h, x, z)− b(h) +Mx((h, x))[S] +Mh((h, x))[S]− (κ + δ)S +
Et [dtS((h, x))]

dt
(40)

+ ϕ f (θ)β
∫ x

x

(
S(h, x′)− S(h, x)

)
dHt(x′)− f (θ)β

∫ x

x∗(h)
S(h, x′′)dHt(x′′)

+ (Ψu(h)[U]− Ψe(h)[U]− κuUt(h))

This automatically implies that Vt((h, x, r)) is independent of r as Vt((h, x)) = St((h, x)) + Ut(h).
Under bilateral efficiency of the wage bargaining, we combine the individual rationality condi-
tions to obtain:

Vt(h, x) ≥ Ut(h)

E.1.4 Monotonicity of value functions

Next, we confirm that the value functions are monotonic in the productivity state x, which allows
us to define the separation contour x∗(h)

Lemma 4. The production value function V(h, x) is monotonic in x for all h.

Proof. Suppose not: there exists some (h, x) such that ∂xV(h, x) = ∂xS(h, x) < 0. Then, using (40)
and considering the first-order terms, we get the following expression after rearranging terms:

(βϕ f (θ)PA(x) + ρ + κ + δ)∂xS((h, x)) = ∂x p(h, x, z)

80Note also that W((h, x′, x))− W(y) = (S(h, x, b)− S(h, r, b))(1 − β) + β(S(h, x′, b)− S(h, x, b)).
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where PA(x) :=
∫

x′ 1 {S(h, x′) ≥ S(h, x)} dHt(x) is the measure of new jobs that a worker with
state (h, x) would accept. expected surplus gain from accepting new jobs, with (Y)+ := max[Y, 0].
On the right-hand side, the first term ∂x p(h, x, z) by definition of the production function p(h, ·, z),
which contradicts Sx(h, x) < 0 as βϕ f (θ)PA(x) + ρ + κ + δ > 0.

An implications of the monotonicity of the value functions is that we can conveniently define
the separation contour x∗(h), which is used in equilibrium definition (Proposition 6.1).

Corollary E.0.1. For every h ∈ [h, h], there exists a unique x∗(h) such that V(h, x∗(h)) = U(h).

E.2 Proof of Proposition 6.1

Proof. We proceed in two parts. First, we show that the HJB and KF equations defined in Propo-
sition 6.1 describe the worker distribution and values of all agent states. Second, we show that all
other endogenous variables can be treated as static conditional on {V(·), g(·)}.

HJB equation. From (38), we use Lemma 3 to re-express the second line as:

ρVt(hy, xy) = p(hy, xy, z) +Mx(hy, xy)[V] +Mh(hy, xy)[V]− κVt(hy, xy) (41)

− δ
(
Vt(hy, xy)− Ut(h)

)
+

Et
[
dtV(hy, xy)

]
dt

+ ϕ f (θ)β
∫ x

x

(
Vt((h, x′))− Vt(h, x)

)
dHt(x′)

where (41) coincides with (19). Next, we also subsitute out the worker value functions in the
unemployment HJB to obtain:

ρUt(h) = b(h) +M(u)
h (y)[Ut]− (κ + κu)Ut(h) +

Et [dtUt(h)]
dt

+ f (θ)β
∫ x

x∗(h)
(V((h, x))− Ut(h)) dHt(x)

which coincides with the value of unemployment in (19). Finally, the boundary condition Vt(h, x) =
Ut(h) is a direct result of combining the bilateral efficiency of separations with Corollary E.0.1.

KF equation. Next consider the law of motion for workers. We first consider employment dy-
namics. Workers in employed state y exogenously separate at rate δ and exit the labor market at
rate κ. In addition, they meet new jobs at rate ϕ f (θ). As a worker would only accept a job if its
production value is greater than its current job, the probability of accepting a job is 1 − Ht(xy),
where xy is the productivity corresponding to employment state y. Next, consider inflows to
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y, IN (y) which can come from hiring or wage adjustments (e.g., bargaining). The inflows into
y = (hy, xy, ry) are given by:

IN (y) =


q(θt)ϕ · dHt(r)

∫
y′∈Y 1

{
hy′ = hy, x′y′ = xy, ry′ ≤ ry

}
gt(y′) dη(y′)

+dHt(x)
∫

y′∈Y 1
{

hy′ = hy, x′y′ = ry

}
gt(y′) dη(y′), if ry > b,

dHt(x)q(θt)ut(h), if ry = b.

where ut(h) = gt((h, b, b))dη(y) is mass of workers of human capital h in unemployment to
denote the total search effort among workers with human capital h. For jobs where the outside
option is not unemployment (ry ̸= b ), then inflows consist of two terms. The first term captures
the mass workers flowing into y as a result of bargaining without quits. For workers at job pro-
ductivity xy with outside options lower than ry, meeting a firm posting jobs productivity ry allows
them to increase their threatpoint during bargaining. This is scaled by the frequency of job-ry con-
tacts, which is q(θt)dHt(ry). The second term captures the mass of workers who flow into y due
to hiring. Firms already at jobs with productivity ry will quit when they meet a job-xy vacancy,
which occurs with rate q(θt)dHt(xy). States where the outside option is unemployment can only
hire workers out of unemployment.

Next, we consider movements in productivity. Define M∗
x(y)[·] to be the adjoint operator of

Mx(y)[·] defined in (34) with respect to the base measure η(x). Similarly, define M∗
h(y)[·] to be

the adjoint operator of the human capital diffusion M∗
h(y)[·] and M∗

r (y)[·] to be the adjoint of
M∗

r (y)[·] . Combining these terms yields the following KF equation for unemployed workers on
the interior of the distribution:

−dgt(y)
dt

= −(δ + κ + ϕ f (θ)(1 − Ht(xy)))gt(y) +M∗
x(y)[gt] +M∗

h(y)[gt]

+ IN (y) +M∗
r (y)[gt], for {y ∈ YE}

Unemployment dynamics are characterized by worker separations as well as a re-injection
of workers from labor market exit. Let us define g(h)t =

∫
y:hy=h gt(y)dη(y) as the distribution of

workers with human capital h. The KF equation for unemployed workers is:

∂tut(h) = (δ + κ)
(

g(h)t − ut(h)
)
− f (θt)ut(h) +

σ(x∗t (h))
2

2
∂xgt(y∗t (h))−M∗

x(y
∗
t (h))[gt]

where y∗t (h) = (h, x∗t (h), x∗t (h)) is the employment state corresponding to the separation threshold
for h. The first term captures unemployment inflows arising from exogenous separation shocks or
re-injection of workers from labor market exit. Workers leave unemployment if they find a job at
rate f (θt). Similar to employed workers, human capital also involves during unemployment but
according to a different diffusion process. Finally, the fourth term captures the inflow of workers
due to endogenous separations at the separation boundary, which corresponds to the mass of
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workers that leave the non-separated employment states at time t.81

Finally, we describe the boundary conditions implied by the model. From endogenous sepa-
rations we have no mass below the separation contour:

gt(y) = 0, for
{

y ∈ YE : x ≤ xy ≤ x∗t (h)
}

Due to renegotiation under mutual consent, we similarly have that workers cannot have outside
options greater than their current job productivity:

gt(y) = 0, for
{

y ∈ Y : ry > xy
}

This concludes the first part of the derivation.

Sufficiency. Next, we show that all other endogenous variables can be treated as static functions
only of {Ut(·), Vt(·), gt(·)} for fixed t. First, we obtain xt(·) immediately from its (18). Next, the
firm and worker value functions are immediately given by the wage bargaining equation (16) for
Wt(·), and for Jt(·):

Jt(y) = Vt(h(y), x(y))− Wt(y)− Ut(h(y)).

for all y ∈ YE. As a result, the expected value of a new job, JN(x) in (37), is also determined. For
every new job of productivity x, vacancies vt(x) are determined such that:

C ′
t(vt(x)) ≥ q(θ)JN

t (x) (42)

which holds with equality for vt(x) > 0. Define the implied solution to (42) as vt(x; θ). Similarly,
define aggregate recruiting intensity as νt(θ) :=

∫
x vt(x)dF(x). Aggregate search effort is obtained

immediately from knowledge of the worker distribution:

et = ϕ
∫

y∈YE

gt(y)dη(y) +
∫

y∈YYE
gt(y)dη(y)

The relationship for tightness is:

θt =
νt(θt)

et

Conditional the value functionals and distribution, this is equation is one unknown and implicitly
defines θ. Since θ is a function of {Ut(·), Vt(·), gt(·)} , vt(x) in (42) is as well, along with dHt(x) :=
vt(x)dF(x).

81Note that there is zero mass at the separation boundary, g(y∗t (h)) = 0.
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E.3 The Master equation

We state the Master Equation corresponding to the quantitative model in Section 6. Relative to the
equilibrium described in Propoisition 6.1, we make two modifications for conciseness. First, we
express the value function Vt(·) over the worker state space (including unemployment), by defin-
ing Vt(y) := Vt(hy, xy) if the worker is employed and (xy ̸= b), and Vt(y) = Ut(h) if the worker
is unemployed.82 Second, we replace the boundary condition governing endogenous separations
with a Poisson process that depends on the difference between the value at y and unemployment
S(Ut(hy) − Vt(y)), where S(·) is a logistic function scaled to ensure separation with high prob-
ability if Vt(y) < Ut(h).83 To compress notation, we define the generator A[·] as encoding the
conditional expectations of the HJB equations. We therefore express (19-6) in the shortened form:

ρVt(y) = p(hy, xy) +A(y)[V] +
Et[dVt(y)]

dt
, (43)

where A(y)[V] =
Mx(xy)[V] +M(e)

h (hy)[V]−
(
δ + S(Ut(hy)− Vt(hy))

)
(Vt(y)− Ut(hy))− κVt(y)

+ϕ f (θ)β
∫ x

xy

(
Vt(hy, x′)− Vt(y)

)
dHt(x′), if employed

M(u)
h (hy)[V]− (κ + κu)Vt(y) + f (θ)β

∫ x
x∗(hy)

(
Vt(hy, x′)− Vt(y)

)
dHt(x′), if unemployed

Similarly, we define B[·] to be the operator encoding the law of motion from the KF equations
(7-20), which lets us write:84

dgt(y)
dt

= B(y)[gt] (44)

Importantly, B is not the adjoint of A due to the presence of mass points and because the produc-
tion value does not depend on the worker’s outside option.

The Master Equation substitutes the KF equation (44) into the HJB equation (43) to index the
value functions by the distribution of worker across states and stochastic aggregate productivity,
z. In particular, we re-express Vt(y) as Vt(y, gt, z) where now the value function only depends on t
through nonstochastic changes in the model parameters Ωt. We then use the chain rule to express
the time-varying component of the HJB equation in terms of these aggregate state variables, which
lead to the Master Equation:

ρVt(y, g, z) = p(hy, xy, z) +A(y)[V] +
∫

y′

∂Vt(y)
∂gt(y′)

B(y′)[gt]dη(y′) +Q(z)[Vt] +
∂Vt

∂t
(45)

where Q(z) is an operator that encodes changes in the continuation value from aggregate risk. The

82Similarly, we define p(h, x) = b(h) for unemployment states.
83Quantitatively, replacing the boundary condition with a softmax operator makes little difference, but simplifies the

solution to the transition dynamics.
84Consistent with our modification, we replace σ(x∗

t (h))2

2 ∂xgt(y∗t (h)) with
∫

y
{

h = hy
}

S(Ut(hy)−Vt(y))gt(y)dη(y) in
(20).
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third term encodes how the value function changes with changes to the equilibrium distribution
of workers across states, where we use (44) to substitute for dgt

dt . The final term reflects the value
function response to perfect foresight changes to the economy. Note that, in the steady state of the
model without aggregate shocks, the last three terms are set to zero.

E.4 FAME

An explicit solution to the Master Equation (45) is difficult in our context due to its dependence on
the distribution function of workers. To compute transition dynamics, we instead perform a first-
order approximation of the Master equation (FAME) following Bilal (2023). We proceed in two
parts. First, we derive the deterministic impulse value , νD, which is the operator that encodes the
Frechet derivative of the value function with respect to perturbations in the distribution, evaluate
at the deterministic steady state (V, g): νD(y, y′) := ∂V(y)

∂g(y)

∣∣
V=V,g=g. Then, we solve for the impulse

value that captures deterministic transition dynamics for some dΩtt≥0, νt. In what follows, we
consider the model with aggregate risk, and therefore ignore Q(z).

E.4.1 Deterministic impulse value

Consider an impulse to the steady state worker distribution, h, of magnitude ϵ: g 7→ g + ϵh .
To simplify notation, we denote AV(y)[V] to be Frechet derivative of the conditional expectation
operator at the steady state value function.85 We define Ag[V], BV [g], and Bg[g] similarly.

Proposition E.1. Deterministic FAME The first-order approximation to the Master equation following a
perturbation of the distribution , νD, around the steady state solves the following recursive equation:

ρνD(y, y′) =
∫

AV(y, w)[V]νD(w, y′)dη(w) +A(y)
[
νD(·, y′)

]
(46)

+Ag(y, y′)[V] + B∗(y′)[ν(y, ·)] +
∫

w
νD(y, w)G(w, y′)dη(w)

where G(w, y′) =
{
Bg(w, y′)[g] +

∫
ℓ BV(w, ℓ)[g]νD(ℓ, y′)dη(ℓ)

}
.

Proof. We follow the proof for Theorem 1 of Bilal (2023). We lienearize each term of the Master
equation (45). First, note that flow production p(y) is not dependent on V and g. Next, consider
the continuation value: Linearizing (45) around the steady state, we obtain:∫

ρνD(y, y′)h(y′)dη(y′)d [A(y)[V]] =
∫ ∫

AV(y, w)[V]νD(w, y′)dη(w)h(y′)dη(y′)

+
∫

A(y)νD(·, y′)h(y′)dη(y′) +
∫

Ag(y, y′)[V]h(y′)dη(y′)

85As we will see in the numerical implementation, if we discretize the worker state space over N grid points, then we
can write If we consider the discretized version of the value function, V, and the operator, A, then AV(y)[V] correspond
to the matrix A, where AV,ij = ∑k=0N

∂Aik
∂Vj

Vk.
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Next consider the third term that encodes the dependence on the value function based on the
worker distribution. Differentiating the generator for the worker law of motion:

d [B(w)[g]] = B(w)[g] + B(w)[h] +
∫

y′
Bg(w, y′)[g]h(y′)dη(y′) (47)

+
∫

y′

∫
ℓ
BV(w, ℓ)[g]νD(ℓ, y′)h(y′)dη(ℓ)dη(y′)

Note that by definition of steady state, B(w)[g] = 0. Next, let B∗ be the adjoint operator of B.
Then we can rewrite the second term in (47):∫

y′
νD(y, y′)B(y′)[h]dη(y′) =

∫
y′
B∗(y′)[ν(y, ·)]h(y′)dη(y′) + Q

where, following Bilal (2023), Q is an integral over some measure η that only loads on the mass
points of Y . We can therefore write:

d
[∫

y′

∂Vt(y)
∂gt(y′)

B(y′)[gt]dη(y′)
]
=
∫

y′
B∗(y′)[ν(y, ·)]h(y′)dη(y′)

+
∫

y′

∫
w

νD(y, w)

{
Bg(w, y′)[g]h(y′)dη(y′) +

∫
ℓ
BV(w, ℓ)[g]νD(ℓ, y′)h(y′)dη(ℓ)

}
dη(w)dη(y′) + Q

where use the definition ∂V(y)
∂g(y′) = νD(y, y′) and ignore the linearization in the of dνD(·, ·) in the

third term because it consists of terms greater than first order. We ignore the final two terms of
(45) at the deterministic steady state. Combining the three terms with the linearization of the
left-hand side, ρ

∫
y′ ν(y, y′)h(y′)dη(y′), we obtain the deterministic FAME in E.1:

ρ
∫

y′
ν(y, y′)h(y′)dη(y′) =

∫ ∫
AV(y, w)[V]νD(w, y′)dη(w)h(y′)dη(y′)

+
∫

A(y)νD(·, y′)h(y′)dη(y′) +
∫

Ag(y, y′)[V]h(y′)dη(y′) +
∫

y′
B∗(y′)[ν(y, ·)]h(y′)dη(y′)

+
∫

y′

∫
w

νD(y, w)G(w, y′)dη(w)h(y′)dη(y′) + Q

where G(w, y′) =
{
Bg(w, y′)[g] +

∫
ℓ BV(w, ℓ)[g]νD(ℓ, y′)dη(ℓ)

}
. Equating coefficients, we drop

the h(y′)dη(y′) to obtain (46).

E.5 Moment construction

In this section, we provide a description of how we constructed simulated moments in estimating
the model in Section 6. Given a vector of parameters Θ, our algorithm proceeds in four steps:
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1. Solve for the steady state of the model, V(y), g(y)

2. Estimating the transition dynamics of the model following a job destruction shock, Vt(y), gt(y)

3. Construct all moments using a combination of analytic formulas and simualated data.

4. Evaluate the objective function G(Θ) using the moments constructed from the data and the
model.

The sections below provide details on each of these steps.

E.5.1 Algorithm for solving the steady state

To solve for the steady state of the model, we implement a standard finite difference scheme fol-
lowing Achdou et al. (2022).

E.5.2 Solving transition dynamics following a job destruction shock

Constructing model-implied spillover estimates requires solving the transition dynamics of the
model following a job destruction shock every time we evaluate a new value of Θ from the pa-
rameter. Previous papers with heterogeneous agents typically break up the estimation procedure
by sequentially fitting a subset of parameters to steady state moments and then using another,
typically subset of parameters to fit dynamic moments ( e.g., time-series statistics from aggregate
variables). This approach is unsuitable in our application for two reasons. First, our primary
moments of interest – the worker spillover effects – reflect the response of dynamics of the labor
market as it recovers from a job destruction shock. As a result, it is necessary to solve for transition
dynamics when internally calibrating the model. Second, the earnings and employment effects of
these spillovers cannot be cleanly separated from parameters that can be estimated in steady state,
as they are impacted by the level of wage dispersion, equilibrium job-finding rate, mean job loss
effects in the model. It is therefore desirable to estimate the internally calibrated parameters jointly
using a combination of steady-state and dynamic moments.

We contribute a novel approach to jointly estimating both the dynamic and steady-state mo-
ments using recent advances in solving continuous-time heterogeneous agent models and high-
performance numerical computing. To solve for the transition dynamics, we proceed in three
steps. First, we use results from (Bilal, 2023) to construct the first-order approximation of the
master equation (FAME) underlying the model. As the job destruction shocks we consider are
explicitly a shift in the worker distribution (without a change in the structural parameters of the
economy), computing the transition dynamics necessary for calibration only requires solving for
the deterministic Impulse Value ν(x, x′) := ∂V(x)

∂g(x′) (V, g), i.e. Frechet-derivative of the value func-
tion (at x) with respect to changes in the distribution (at x′). Solving for ν(x, x′) requires knowl-
edge of the Jacobian of the generators A and B with respect to both the distribution and the
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value functions.86 Whereas Bilal (2023) solves these functions analytically in slightly less-complex
models, we instead calculate these objects computationally by automatically differentiating at the
steady-state of the model using JAX (Bradbury et al., 2018).87

We lay out our solution of the Impulve Value in the discretized version of the model. We
define Ã(V, g) = A(V, g)V to be the N × 1 continuation value of the model, when the generator
discretized generator of A is evaluated at the equilibrium V and g. Similarly we define, B̃ =

B(V, g)g
The NxN impulse value is given by ν, where νij =

∂Vi
∂gj

, satisfies solving the following linear
system of equations:

[
ρI − ÃV − A

]
ν + ν

[
−
(

BT + B̃g + B̃Vν
)]

= Ãg

subject to the constraint R(ν) = 0 that enforces the impulse value to be equal to the value at
unemployment for state {y = (h, x, w) : x ≤ x∗(h)}. We use Xy to refer to dim(X) × dim(y) the
jacobian of X with respect to y evaluated at the steady state, i.e. Xij =

∂Xi
∂yj

.
We use the fact that the bracketed terms consistute, with ν, constitute a Sylvester equation to

run an iterative procedure to solve for ν, under the following algorithm that parallels Corrolary 1
in Bilal (2023):

1. Guess v0

2. Given ν(n), update ν(n+1) by solving the Sylvester equation

[
ρI − ÃV − A

]
ν(n+1) + ν(n+1)

[
−
(

BT + B̃g + B̃Vν(n)
)]

= Ãg,

and stop when ν(n+1) is sufficiently close to ν(n).

3. Enforce the endogenous separation conditions for infeasible productivity points by adjusting
ν̂ from ν(n+1) such that R(ν̂) = 0.

Perturbation To generate model spillovers, we solve the transition dynamics following a pertur-
bation to the steady state distribution of workers, h(y),

g(y) = g0(y) + εh(y),

We consider a distributional impulse of a job destruction shock, in which ε fraction of workers
are separated from their jobs and sent to their (human-capital-specific) unemployment states. In
implementation, we set ε = 0.03 and scale our estimates of spillovers proportionally.

86As the flow value of job production does not depend on the worker distribution, we do not require the correspond-
ing Jacobians of u(·)

87One important benefit of JAX, relative to other open-source libraries, is its use of weak derivatives for operations
commonly used to encode boundaries (e.g., min and max). As the steady state of our model requires solving the optimal
stopping x∗(h), this feature is essential in our implementation
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E.5.3 Stochastic FAME

We consider the extension of our model to aggregate shocks in productivity Z. Let C(z) be the gen-
erator of aggregate shocks (which may depend on z). The first order approximation of the model
with aggregate requires knowledge of how job values change with aggregate productivity shocks.
We first construct the stochastic first order approximation of the master equation for aggregate
productivity ω(y, z). The discretized version w is a N × K matrix, where K is the number of grid
points on the discretization of Z . Similar to Section E.5.2, ω satisfies the following equation:

ρω(x, z) = uz(x) +Az(x)[VSS] +A(x)[ω(·, z)] +
∫

AV(x, y)[VSS]ω(y, z)dη(y) (48)

+ C(z)[ω(x, ·)] +
∫

ν(x, x′)S(x′, ω, z)dη(x′)

S(x′, z, ω) =
∫

BV(x′, y)[gSS]ω(y, z)dη(y) + Bz[gSS]

which takes the discretized form of the N × K matrix w that solves

ρw =uz + Ãz + Aw + ÃVw + wCT ++v
[
B̃Vw + B̃z

]
where C is a K × K matrix and C̃ = VιT

KC, where ιK is a vector of ones of length K. Rearranging,
we obtain:

[
ρI − A − ÃV + vB̃V

]
w + w

[
−CT

]
= uz + Ãz + C̃z + vB̃z

which can be solved as a Sylvester equation, similar to the deterministic impulse value.

E.5.4 Deterministic shocks with FAME

The deterministic FAME νD captures the response of the production value functions following
an impulse to the worker distribution. To solve for the perfect foresight transition shocks,νt, we
must account for the fact that impulse response may change due to changes in the structural
parameters of the model. The solution of the FAME following an MIT shock dΩ(t) to the model
parameters satisfies a version of the FAME equation that accounts for the potential for the HJB
and KF generators to be time-varying. We follow the construction outlined in Proposition 3 of
Bilal and Rossi-Hansberg (2023), which can also be seen as constructing a stochastic FAME ω(x, z)
in (48) by replacing the aggregate states Z as R+ and the generator A(x) as a detemrinistic drift
term to track the path of dΩ(t) over time.

E.5.5 Discretized FAME equations

ρVD = Ag + AVVD + AVD + VD
(

B + Bg + BVVD
)

96



(∆)−1 (ht+1 − ht) =
(

B + Bg + BVVD
)

ht + BΩdΩt + BVvt

for time step ∆, around the steady state equilibrium.

ρvt = uΩdΩt + Avt + AΩdΩt + AVvt + VD (BΩdΩt + BVνt)+ (∆)−1
(

vt+1 − vt
)

E.6 Estimation strategy

In this section, we present details on the model estimation. Let Θ be the vector of internally
calibrated parameters. We estimate the Θ via Simulated Method of Moments (SMM) under the
following objective function:

Θ̂ = arg min
Θ

G(Θ) = g(Θ)′Wg(Θ)

where g(Θ) is the percentage point difference between the simulated moments, m(Θ), and the
moments constructed from the data, m̂ and W is a weighting matrix.88 We use the identity matrix
as the weighting matrix. In our baseline estimation, W is a diagonal matrix that is equal to the
identity matrix, except for the four elements corresponding to the mean and spillover effects for
on job loss for both relative earnings and employment.

We use the following procedure to estimate Θ̂. First, we construct a global grid search of 219

(524,288) points over a bounded hypercube of the parameter space. We then proceed to run a series
of local search among the top 100 points following Arnoud et al. (2019), using the NLOPT imple-
mentation of the SUBPLEX algorithm (Johnson, 2007). The SUBPLEX performs Nelder-Mead opti-
mization on a subspace of the parameters, which is useful for medium-dimensional optimization
problems such as ours (Rowan, 1990). The global minimum from this procedure is then polished
used high-tolerance local optimizer and report as Θ̂ in the main text.

E.7 Transition dynamics and separation response to aggregate shocks

In this section, we provide details on the transitions dynamics following an “MIT” shock to aggre-
gate productivity in Section 7.2. We provide details for the discretized problem, where the state
space Y is discretized into N points.

88In implementing the GMM estimator, we ensure that all of the data moments are positive. For a given moment k,
gk(Θ) = mk(Θ)−m̂k

max(10−3,m̂k)
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E.7.1 Planner’s problem

We solve the planner’s response to a perfect foresight MIT shock in the discretized form. We let
τ∗ be an arbitrary policy, which can include the low-productivity separation rate s. We solve for
the time-truncated separation policy {τ∗}t=0,...,TM

, where we set the number of months TM to be
large. In matrix form, the planner’s problem is:

S̃WF(dΩ) = max
ø∈RTM

1
2

ŷ(dΩ, dτ)′ŷ(dΩ, dτ)− 1
2

Ĉ(v(dΩ, dτ))′Ĉ(v(dΩ, dτ)) + µdτ,

where ŷ(·, ·) is the TM-length vector of the output gap in each period, Ĉ(·) is the gap in vacancy
costs and µ is the constraint on the policy deviation. Under regularity conditions, the optimal
policy dτ∗ is given by the solution to the following linear system (suppressing the arguments for
brevity):

ŷ′Jy,τ + ĈJC,τ = −µ

where Jy,τ is the Jacobian of the output gap with respect to the policy, i.e. Jy,τ(i, j) = ∂yi
∂τj

, and
similarly for JC,τ. To compute the Jacobian of the output gap, let ht := gt − gss and note that
yt = p′tdgt, where pt is the Ny-length vector of flow production at time t. Then, using the fact that
the separation policy has no direct effect on real production (∂τj pt = 0), we ∂dyi

dτj
= p′∂τj hi which

gives results in the Jacobian:
Jy,τ = H ×1 p

where H is the Ny × TM × TM matrix encoding the change in the distribution for each time-specific
policy: H(i, j, k) = ∂τk hj(i). Relative to the first-order approximation of the transition dynamics,
H is the Hessian matrix corresponding to the cross-partial derivative of the mass at state i with
respect to the aggregate shock at period j and the value of τ at period k. To solve for H, use the
stochastic partial differential equation (56)

dht(x)
dt

= Bht + B̃g + B̃VvD + B̃t + B̃Vv(t) (56)

Recall that, from the impulse response function, the transition dynamics of the worker distri-
bution follow a law of motion that depends on the deviation of the impulse value at each time
period. In matrix form, the law of motion can be expressed as the Sylvester equation:

Jy,τ = H×2 p, where Htis =
∂hti

∂τs

ht+1 = ht + Ght + BΩΩt + Bττt + BVvt, where G = B + Bg + BVVD

(ρI + I)vt = uΩdΩt + uττt + Avt + AΩΩt + Aττt + AVvt + VD (BΩΩt + Bττt + BVνt)+ vt+1

Define the TxT difference operator D such that the i-th row of D consists of Dij = −1, Di,j+1 = 1,
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and 0 elsewhere for i = 1, . . . , T − 1. The last row consists of 0s.
Recall that y = Hp, where H is the N × T matrix of distribution deviation from steady state.

Let Ω be the K × T deviation of structural parametesrs (length K) from steady state, and τ to be
the T × 1 policy vector. Also let VT be the NxT matrix of time-dependent deviations of the value
function. We rewrite the IRF and trend FAME as:

HD′ = GH + BΩΩ + Bττ + BVVT, where G = B + Bg + BVVD

ρVT = uΩΩ + uττ + AVT + AΩΩ + Aττ + AVVT + VD
(

BΩΩ + Bττ + BVVT
)
+ VTD′

For any τs, where s = 1, . . . , T, we can differentiate these equations to obtain:

Hτs D
′ = GHτs + Bτ1τs + BVVT

τs

ρVT
τs
= uτ1τs + AVT

τs
+ Aτ1τs + AVVT

τs
+ VD

(
Bτ1τs + BVVT

τs

)
+ VT

τs
D′

where 1τs is a vector that is 0 everywhere except for the s − th element, which is taus.
To solve for VT

τs
, we rearrange the differentiated equation to obtain the following Sylvester

equation.

(
ρI − A − AV − VDBV

)
VT

τs
+ VT

τs
D′ = uτ1τs + Aτ1τs + VDBτ1τs

Given VT
τs

, then we can solve for Hτs by backward iterating from t = T. Since H··s = Hτs , this
gives us H.

Next,
Jc,τ = MC(vac) ∗ Jvac,τ

where MC(vac) = ∂vacC(vac). Note that Jvac,τ is a Nx × T matrix. Because vacancies are flows,
then we can write:

∂cit

∂τs
= C′(vacit)

(
∂vacit

∂Vit

∂Vit

∂τs
+

∂vacit

∂git

∂git

∂τs

)
Combining these terms gives us a closed-form solution to the FOC that we solve to obtain τ∗.

E.8 Steady state solution for linear employment subsidy.

We consider the optimal level of the employment transfers without aggregate shocks, τss. We set
the policy such that:

τss = arg max
τ

SWF (τ)− (1 − u)τ

99



where SWF(τ) is the modified social welfare function (21) with the employment subsidy.89 Be-
cause agents are forward-looking, job creation is also impacted by τ in addition to the endogenous
separation margin.

Under our preferred calibration, we find that the optimal subsidy is negative (τss = −10.35),
which leads to a 0.29% increase in expected production relative to the no-policy (NP) case. Rem-
iniscent of earlier work by (Hopenhayn and Rogerson, 1993) in heterogeneous firms models, we
find that the planner would like to raise the productivity threshold for separations by implement-
ing a tax on jobs, which makes firms more willing to layoff workers at unproductive jobs. In
Appendix Figure A.10, we show the change in the distribution of job productivity as a result of
the policy. Implementing the employment tax leads more workers to be reallocated to higher
productivity jobs in the steady state, by “cleansing” marginally productive jobs.90 At the same
time, the steady state unemployment rate increases by 3% as a result and the worker share of total
production declines significantly.

89Because we only allowing the planner to use a restricted set of policy instruments, the optimal linear subsidy does
not coincide with the first-best distribution of employment, vacancies, and market tightness that maximizes production.
While standard benchmarks for efficiency – such as the Hosios condition – no longer hold in a setting with a job ladder
and heterogeneous workers, the optimal allocation involves implementing firm-specific subsidies for job creation.

90The loss of low-productivity jobs also leads to a decline in the bargaining threat points as shown in right panel of
Appendix Figure A.10.
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